Korean Journal of Materials Research, Vol.25, No.1, 43-47, January, 2015
Gas Absorption and Release Properties of Zn(BH4)2 and MgH2-Zn(BH4)2-Ni-Ti-Fe Alloy
E-mail:
Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill in an Ar atmosphere, and XRD analysis, SEM observation, FT-IR analysis, DTA, and TGA were performed for synthesized Zn(BH4)2 samples. 90 wt% MgH2+1.67 wt% Zn(BH4)2(+NaCl)+5 wt% Ni+1.67 wt% Ti+1.67 wt% Fe (named 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe) samples were also prepared by milling in a planetary ball mill in an H2 atmosphere. The gas absorption and release properties of the Zn(BH4)2(+NaCl) and 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe samples were investigated. An FT-IR analysis showed that Zn(BH4)2 formed in the Zn(BH4)2(+NaCl) samples prepared by milling ZnCl2 and NaBH4. At the first cycle at 320 oC, 90MgH2+1.67Zn(BH4)2(+NaCl)+5Ni+1.67Ti+1.67Fe absorbed 2.95 wt% H for 2.5 min and 4.93 wt% H for 60 min under 12 bar H2, and released 1.46 wt% H for 10 min and 4.57 wt% H for 60 min under 1.0 bar H2.
Keywords:hydrogen absorbing materials;microstructure;X-ray diffraction;Zn(BH4)2-MgH2-Ni-Ti-Fe;hydrogen release
- Song MY, Kwak YJ, Lee SH, Park HR, Korean J. Met. Mater., 51, 119 (2013)
- Kim KI, Hong TW, Korean J. Met. Mater., 49(3), 264 (2011)
- Song MY, Kwak YJ, Lee SH, Park HR, Met. Mater. Int., 19(4), 879 (2013)
- Reilly JJ, Wiswall RH, Inorg. Chem., 6(12), 2220 (1967)
- Reilly JJ, Wiswall RH, Inorg. Chem., 7(11), 2254 (1968)
- Akiba E, Nomura K, Ono S, Suda S, Int. J. Hydrog. Energy, 7(10), 787 (1982)
- Li ZN, Liu XP, Jiang LJ, Wang SM, Int. J. Hydrog. Energy, 32(12), 1869 (2007)
- Boulet JM, Gerard N, J. Less-Common Met., 89, 151 (1983)
- Li Z, Liu X, Huang Z, Jiang L, Wang S, Rare Metals, 25(6), 247 (2006)
- Zuttel A, Rentsch S, Fisher P, Wenger P, Sudan P, Mauron P, Emmenegger C, J. Alloy. Compd., 356-357, 515 (2003)
- Orimo S, Nakamori Y, Zuttel A, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 108, 51 (2004)
- Hagemann H, Gomes S, Renaudin G, Yvon K, J. Alloy. Compd., 363, 129 (2004)
- Renaudin G, Gomes S, Hagemann H, Keller L, Yvon K, J. Alloy. Compd., 375, 98 (2004)
- Yoshino M, Komiya K, Takahashi Y, Shinzato Y, Yukawa H, Morinaga M, J. Alloy. Compd., 404-406, 185 (2005)
- Orimo S, Nakamori Y, Kitahara G, Miwa K, Ohba N, Towata S, Zuttel A, J. Alloy. Compd., 404-406, 427 (2005)
- Kang JK, Kim SY, Han YS, Muller RP, Goddard III WA, Appl. Phys. Lett., 87, 111904 (2005)
- Kumar RS, Cornelius AL, Appl. Phys. Lett., 87, 261916 (2005)
- Nakamori Y, Miwa K, Ninomiya A, Li HW, Ohba N, Towata S, Zuttel A, Orimo S, Phys. Rev. B, 74, 045126 (2006)
- Nakamori Y, Li HW, Miwa K, Towata S, Orimo S, Mater. Trans., 47, 1898 (2006)
- Nakagawa T, Ichikawa T, Kojima Y, Fujii H, Mater. Trans., 48(3), 556 (2007)
- Mikheeva VI, Naltseva NN, Alekseeva LS, Zh. Neorg. Khim., 13, 1301 (1968)
- Jeon E, Cho YW, J. Alloy. Compd., 422, 273 (2006)
- Jeon E, Cho YW, Trans. Korean Hydrogen New Energy Soc., 16(3), 262 (2005)
- Song MY, Pezat M, Darriet B, Hagenmuller P, J. Mater. Sci., 20, 2958 (1985)
- Kwak YJ, Lee SH, Park HR, Song MY, Korean J. Met. Mater., 51(8), 607 (2013)