화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.23, 67-71, March, 2015
Reverse water gas shift reaction catalyzed by Fe nanoparticles with high catalytic activity and stability
E-mail:
Unsupported Fe-oxide nanoparticles were used as catalysts for reverse water gas shift (RWGS) reaction at 600 °C, which showed a high catalytic activity and stability. Using transmission electron microscopy, nanoparticles of Fe-oxide was found to be resistant toward agglomeration during the RWGS reaction. X-ray photoelectron spectroscopy and X-ray diffraction studies revealed that C and O formed by the reaction between Fe-oxide surface and reagent and product (CO and CO2) of the RWGS reaction diffused into the bulk of Fe-oxide nanocatalysts. As a consequence, structure of catalytically active surface, consisting of metallic Fe, was maintained during the RWGS reaction, resulting in a long-term stability of catalytic activity.
  1. Centi G, Perathoner S, Catal. Today, 148(3-4), 191 (2009)
  2. Muradov NZ, Veziroglu TN, Int. J. Hydrog. Energy, 33(23), 6804 (2008)
  3. Wang W, Wang SP, Ma XB, Gong JL, Chem. Soc. Rev., 40, 3703 (2011)
  4. Chen CS, You JH, Lin CC, J. Phys. Chem. C, 115, 1464 (2011)
  5. den Breejen JP, Sietsma JRA, Friedrich H, Bitter JH, de Jong KP, J. Catal., 270(1), 146 (2010)
  6. Lebarbier VM, Dagle RA, Kovarik L, Adarme JAL, King DL, Palo DR, Catal. Sci. Technol., 2, 2116 (2012)
  7. Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki PR, Howard BH, Deng XY, Matranga C, ACS Catal., 2, 1667 (2012)
  8. Park SW, Joo OS, Jung KD, Kim H, Han SH, Appl. Catal. A: Gen., 211(1), 81 (2001)
  9. Stone FS, Waller D, Top. Catal., 22, 305 (2003)
  10. Chen CS, Cheng WH, Lin SS, Appl. Catal. A: Gen., 257(1), 97 (2004)
  11. Goguet A, Meunier F, Breen JP, Burch R, Petch MI, Ghenciu AF, J. Catal., 226(2), 382 (2004)
  12. Kim DH, Sim JK, Lee J, Seo HO, Jeong MG, Kim YD, Kim SH, Fuel, 112, 111 (2013)
  13. Kang YS, Risbud S, Rabolt JF, Stroeve P, Chem. Mater., 8, 2209 (1996)
  14. Martinez-Mera I, Espinosa-Pesqueira ME, Perez-Hernandez R, Arenas-Alatorre J, Mater. Lett., 61, 4447 (2007)
  15. Bonnet F, Ropital F, Lecour P, Espinat D, Huiban Y, Gengembre L, Berthier Y, Marcus P, Surf. Interface Anal., 34, 418 (2002)
  16. Moulder JF, Stickle WF, Sobol PE, Bomben KD, in: Chastain J, King RC (Eds.), Handbook of X-ray Photoelectron Spectroscopy,, Physical Electronics, Inc., Minnesota, 1995.
  17. Yu LY, Sui LN, Qin Y, Du FL, Cui ZL, Mater. Lett., 63, 1677 (2009)
  18. Hua ZH, Deng Y, Li KN, Yang SG, Nanoscale Res. Lett., 7, 129 (2012)
  19. Woo K, Hong J, Choi S, Lee HW, Ahn JP, Kim CS, Lee SW, Chem. Mater., 16, 2814 (2004)
  20. Gonzalez L, Miranda R, Ferrer S, Surf. Sci., 119, 61 (1982)
  21. Jiang DE, Carter EA, Surf. Sci., 570, 167 (2004)