화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.24, 315-321, April, 2015
Elemental mercury oxidation from flue gas by microwave catalytic oxidation over Mn/γ-Al2O3
E-mail:
The integrated microwave with Mn/γ-Al2O3 and ozone was employed to oxidize elemental mercury (Hg0) in simulated flue gas. Hg0 oxidation efficiency in the integrated system attained 92.2%. Mn/γ-Al2O3 catalyst was characterized by XRD, XPS, FT-IR, SEM. XPS spectra indicate the formation of a stable mercuric oxide species (HgO) from mercury oxidation. Ozone molecules in air could enhance free radical formation. Hg0 was oxidized to HgO in the presence of ozone and free radical. The coupling role between ozone and radical on mercury oxidation was formed. Microwave catalytic oxidation of elemental mercury reaction with the Mn/γ-Al2O3 catalyst follows Langmuir?Hinshelwood kinetics.
  1. Zheng YJ, Jensen AD, Windelin C, Jensen F, Prog. Energy Combust. Sci., 38(5), 599 (2012)
  2. Kim MH, Ham SW, Lee JB, Appl. Catal. B: Environ., 99(1-2), 272 (2010)
  3. Wu SH, Wang SA, Gao JH, Wu YY, Chen GQ, Zhu YW, J. Hazard. Mater., 188(1-3), 391 (2011)
  4. Qu Z, Yan NQ, Liu P, Chi Y, Jia JP, Environ. Sci. Technol., 43, 610 (2009)
  5. Li X, Liu ZY, Kim J, Lee JY, Appl. Catal. B: Environ., 132-133, 401 (2013)
  6. Hu CX, Zhou JS, He S, Luo ZY, Cen KF, Fuel Process. Technol., 90(6), 812 (2009)
  7. Tao SS, Li CT, Fan XP, Zeng GM, Lu P, Zhang X, Wen QB, Zhao WW, Luo DQ, Fan CZ, Chem. Eng. J., 210, 547 (2012)
  8. Li JR, He C, Shang XS, Chen JS, Yu XW, Yao YJ, J. Fuel Chem. Technol., 40, 241 (2012)
  9. Li HL, Wu CT, Li Y, Zhang JY, Appl. Catal. B: Environ., 111-112, 381 (2012)
  10. Tan ZQ, Su S, Qiu JR, Kong FH, Wangd Z, Hao F, Xiang J, Chem. Eng. J., 195-196, 218 (2012)
  11. Wang JW, Yang JL, Liu ZY, Fuel Process. Technol., 91(6), 676 (2010)
  12. Qu Z, Yan NQ, Liu P, Jia JP, Yang SJ, J. Hazard. Mater., 183(1-3), 132 (2010)
  13. Wang HQ, Zhou SY, Xiao L, Wang YJ, Liu Y, Wu ZB, Catal. Today, 175(1), 202 (2011)
  14. Kong FH, Qiu JR, Liu H, Zhao R, Ai ZH, J. Environ. Sci., 23, 699 (2011)
  15. Hsi HC, Tsai CY, Chem. Eng. J., 191, 378 (2012)
  16. Li JF, Yan NQ, Qu Z, Qiao SH, Yang SJ, Guo YF, Liu P, Jia JP, Environ. Sci. Technol., 44, 426 (2010)
  17. Guo YF, Yan NQ, Yang SJ, Qu Z, Wu ZB, Liu Y, Liu P, Jia JP, Environ. Sci. Technol., 45, 706 (2011)
  18. Xu F, Luo ZY, Cao W, Wang P, Wei B, Gao X, Fang MX, Cen KF, J. Environ. Sci., 21, 328 (2009)
  19. Chen ZY, Mannava DP, Mathur VK, Ind. Eng. Chem. Res., 45(17), 6050 (2006)
  20. Byun Y, Koh DJ, Shin DN, Chemosphere, 83, 69 (2011)
  21. Wang ZH, Jiang SD, Zhu YQ, Zhou JS, Zhou JH, Li ZS, Cen KF, Fuel Process. Technol., 91(11), 1395 (2010)
  22. Byun Y, Ko KB, Cho M, Namkung W, Shin DN, Lee JW, Koh DJ, Kim KT, Chemosphere, 72, 652 (2008)
  23. Chen J, Yang JT, Pan H, Su QF, Liu YM, Shi Y, J. Hazard. Mater., 177(1-3), 908 (2010)
  24. Wei ZS, Zeng GH, Xie ZR, Energy Fuels, 23, 2947 (2009)
  25. Horikoshi S, Hidaka H, Serpone N, Chem. Phys. Lett., 376(3-4), 475 (2003)
  26. Alvarez-Galvan MC, O‘Shea VAP, Fierro JLG, Catal. Commun., 4, 223 (2003)