- Previous Article
- Next Article
- Table of Contents
Applied Chemistry for Engineering, Vol.26, No.4, 515-519, August, 2015
화학적환원에 의한 DNA-mediated 금 나노입자의 합성 및 특성
Synthesis and Characterization of DNA-mediated Gold Nanoparticles by Chemical Reduction Method
E-mail:
초록
DNA템플릿을 이용한 금속 나노입자 합성을 위하여 먼저 DNA와 Gold(III) chloride (HAuCl4.3H2O)의 복합체를 합성하고 UV-Vis spectroscopy 등으로 확인하였고 scanning electron microscopy (SEM)에 의해 그들의 모폴로지를 조사하였다. 합성된 복합체에 hydrazine (N2H4)과 sodium borohydride (NaBH4)와 같은 환원제를 도입하여 화학적 환원을 유도함으로써 DNA 매트릭스에서의 금 나노입자를 제조하였다. 환원제의 종류와 농도에 따른 금 나노입자 형성에 미치는 영향을 비교 조사하였다. 환원제로 hydrazine (N2H4)을 사용한 경우 DNA-Au(III) complex의 환원에 보다 효과적인 결과를 보였다. 합성된 DNA-mediated gold nanoparticle에 대하여 SEM, particle size analyzer (PSA), transmission electron microscopy (TEM)를 이용하여 특성조사를 하였다. 수 nm의 작은 입자들이 응집되면서 대략 55~80 nm의 크기를 갖는 금 나노입자의 클러스터를 형성하였고 이들은 DNA 매트릭스에서 확인되었다.
Complexes composed of hydrogen tetrachloroaurate (III) trihydrate (HAuCl4.3H2O) and DNA were first formed for the synthesis of gold nanoparticle using a DNA template, which were validated using UV-Vis spectroscopy. The morphology of complexes were also characterized by scanning electron microscopy (SEM). DNA-mediated gold nanoparticles were synthesized by the chemical reduction of DNA-Au(III) complexes using hydrazine (N2H4) and sodium borohydride (NaBH4) as reducing agents. The effects of reducing agent types and their concentration on the formation of gold nanoparticles were investigated. The results showed that hydarazine was the most effective for the reduction of DNA-Au(III) complex. The DNA-mediated gold nanoparticles were characterized SEM, particle size analyzer (PSA), and transmission electron microscopy (TEM). Gold nanoparticles with 55~80 nm in diameter were formed by the aggregation of smaller gold nanoparticles ( ∼nm), which was confirmed in the DNA matrix.
- Watson JD, Crick FH, Nature, 171, 737 (1953)
- Wilkins MHF, Stokes AR, Wilson HR, Nature, 171, 738 (1953)
- Winfree E, Liu F, Wenzler LA, Seeman NC, Nature, 394, 539 (1998)
- Seeman NC, Annu. Rev. Biophys. Biomol. Struct., 27, 225 (1998)
- Mao CD, Sun WQ, Seeman NC, J. Am. Chem. Soc., 121(23), 5437 (1999)
- Seeman NC, Nano Lett., 1, 22 (2001)
- Seeman NC, Nature, 421, 427 (2003)
- Rothemund PWK, Nature, 440, 297 (2006)
- Malo J, Mitchell JC, Venien-Bryan C, Harris JR, Wille H, Sherratt DJ, Turberfield AJ, Angew. Chem.-Int. Edit., 44, 3057 (2005)
- Fu TJ, Seeman NC, Biochemistry, 32, 3211 (1993)
- LaBean TH, Li HY, Nano Today, 2(2), 26 (2007)
- Aich P, Labiuk SL, Tari LW, Delbaere LJT, Roesler WJ, Falk KJ, Steer RP, Lee JS, J. Mol. Biol., 294, 477 (1999)
- Tanaka K, Shionoya M, J. Org. Chem., 64, 5002 (1999)
- Seidel R, Ciacchi LC, Weigel M, Pompe W, Mertig M, J. Phys. Chem. B, 108(30), 10801 (2004)
- Richter J, Physica E, 16, 157 (2003)
- Sohn JS, Kwon YW, Jin JI, Jo BW, Molecules, 16, 8143 (2011)
- Shimizu T, Teranishi T, Hasegawa S, Miyake M, J. Phys. Chem. B, 107(12), 2719 (2003)
- Zhong ZY, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A, J. Phys. Chem. B, 108(13), 4046 (2004)
- Esumi K, Suzuki A, Aihara N, Usui K, Torigoe K, Langmuir, 14(12), 3157 (1998)
- Alexandrov A, Smirnova L, Yakimovich N, Sapogova N, Soustov L, Kirsanov A, Bityurin N, Appl. Surf. Sci., 248(1-4), 181 (2005)