화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.26, No.4, 511-514, August, 2015
목질계 셀룰로오스 에탄올 생산공정에서 전처리과정의 설계
Design of Pretreatment Process in Cellulosic Ethanol Production
E-mail:
초록
차세대 바이오에탄올로 주목받고 있는 목질계 바이오매스를 이용한 셀룰로오스 에탄올 생산과정은 셀룰로오스를 단당류로 분해하는 전처리과정이 가장 중요한 역할을 한다. 본 연구에서는 산가수분해와 효소당화과정을 이용하여 볏짚, 톱밥, 복사지, 신문지 등과 같은 목질계 바이오매스로부터 셀룰로오스에탄올을 제조하였다. 전처리과정으로 10~30 wt% 황산을 이용한 산가수분해(100 ℃, 1 h), celluclast (55 ℃, pH = 5.0), AMG (60 ℃, pH = 4.5), spirizyme(60 ℃, pH = 4.2)을 이용한 효소당화과정(30 min), 산가수분해 후 효소당화과정을 비교하였다. 전처리과정의 수율은 hybrid 과정 > 산가수분해 > 효소당화 순으로 셀룰로오스 에탄올로의 전환이 잘 이루어지는 것으로 나타났으며, 최적발효시간은 2일이었다. 또한 20 wt% 황산을 이용한 산가수분해 후 celluclast를 이용하여 효소당화를 수행할 경우 톱밥> 볏짚 > 복사지 > 신문지 순으로 셀룰로오스 에탄올 전환특성이 높게 나타났다.
A pretreatment process of cellulose decomposition to a monosaccharide plays an important role in the cellulosic ethanol production using the lignocellulosic biomass. In this study, a cellulosic ethanol was produced by using acidic hydrolysis and enzymatic saccharification process from the lignocellulosic biomass such as rice straw, sawdust, copying paper and newspaper. Three different pretreatment processes were compared; the acidic hydrolysis (100 ℃, 1 h) using 10~30 wt% of sulfuric acid, the enzymatic saccharification (30 min) using celluclast (55 ℃, pH = 5.0), AMG (60 ℃, pH = 4.5), and spirizyme (60 ℃, pH = 4.2) and also the hybrid process (enzymatic saccharification after acidic hydrolysis). The yield of cellulosic ethanol conversion with those pretreatment processes were obtained as the following order : hybrid process > acidic hydrolysis > enzymatic saccharification. The optimum fermentation time was proven to be two days in this work. The yield of cellulosic ethanol conversion using celluclast after the acidic hydrolysis with 20 wt% sulfuric acid were obtained as the following order : sawdust > rice straw > copying paper > newspaper when conducting enzymatic saccharification.
  1. Lee KE, Lee JY, Kim K, Korean J. Crop Sci., 53(3), 339 (2008)
  2. Kim YS, For. Bioenerg., 27(1), 1 (2008)
  3. Chang TY, Hammerle RH, Japar SM, Salmeen IT, Environ. Sci. Technol., 25(7), 1190 (1996)
  4. Palmer FH, Vehicle performance of gasoline containing oxygenates, Institution of Mechanical Engineers Conference Publication, 33-46, MEP, London, U.K. (1986).
  5. Hong IK, Jeon H, Lee SB, J. Ind. Eng. Chem., 20(5), 2687 (2014)
  6. Lee SB, Jung SK, Lee JD, Appl. Chem. Eng., 21(3), 349 (2010)
  7. Lee SB, Kim H, Appl. Chem. Eng., 25(6), 619 (2014)
  8. Hirano A, Ueda R, Hirayama S, Ogushi Y, Energy, 22(2-3), 137 (1997)
  9. Saha BC, Cotta MA, Enzyme Microb. Technol., 41(4), 528 (2007)
  10. Hahn-Hagerdal B, Galbe M, Gorwa-Grauslund MF, Liden G, Zacchi G, Trends Biotechnol., 24(12), 549 (2006)
  11. Han HJ, Kim SJ, Korean J. Biotechnol. Bioeng., 21(4), 267 (2006)
  12. Ko JJ, Yun SL, Kang SW, Kim SK, J. KORRA, 16(1), 79 (2008)
  13. Colberg PJ, Anaerobic microbial degradation of cellulose, lignin, liligolignols, and monoaromatic ligning derivarives: Zehnder AJB (ed.) Biology of anaerobic microorganism, 333-415, John Wiley & Sons, NewYork (1988).
  14. Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY, Bioresour. Technol., 96(18), 1959 (2005)
  15. Chang VS, Holtzapple MT, Appl. Biochem. Biotechnol., 84, 5 (2000)
  16. Lee YN, Lee SB, Lee JD, Appl. Chem. Eng., 22(1), 77 (2011)