Korea-Australia Rheology Journal, Vol.27, No.4, 287-295, November, 2015
Rheological behavior of acylated pepsin-solubilized collagen solutions: Effects of concentration
E-mail:
Effects of concentration on the rheological behavior of acylated pepsin-solubilized collagen solutions were investigated by steady shear tests, dynamic frequency sweep, creep tests and thixotropic loop measurements in this paper. The results showed that both acylated collagen and native collagen solutions exhibited the typical pseudoplastic behavior and displayed shear thinned behavior with the increase of shear rate. With the increase of acylated collagen concentrations from 5 to 10 mg/mL, shear viscosity, elasticity modulus (G'), viscous modulus (G''), complex viscosity (η*), and the ability to resist deformation increased due to the physical entanglement, whilst loss tangent (tan δ) decreased. Additionally, with the increase of acylated collagen concentrations, the area of thixotropic loop increased from 6.94 to 44.40 watts/m3, indicating that the thixotropy of acylated collagen increased. Compared with native collagen solution, acylated collagen solution had stronger shear viscosity, η*, thixotropy, and ability to resist deformation. Furthermore, Power law model, Carreau model, Cross model, Leonov model and Burger model, were suitable for the fitting of the experimental data.
- Adams ML, Lavasanifar A, Kwon GS, J. Pharm. Sci., 92, 1343 (2003)
- Avery NC, Bailey AJ, Pathol. Biol., 54, 387 (2006)
- Chen YH, Zhang M, Liu WT, Li GY, Korea-Aust. Rheol. J., 23, 41 (2011)
- Choung SH, Chun MS, Kim CY, J. Korean Phys. Soc., 59, 2847 (2847)
- de Paula M, Goissis G, Martins VCA, da Silva Trindade JC, J. Biomed. Mater. Res. Part B: Appl. Biomater., 75B, 393 (2005)
- Dobraszczyk BJ, Morgenstern MP, J. Cereal. Sci., 38, 229 (2003)
- Dolz M, Hernandez MJ, Delegido J, Alfaro MC, Munoz J, J. Food Eng., 81(1), 179 (2007)
- Duan L, Li J, Li C, Li G, Korea-Aust. Rheol. J., 25(3), 137 (2013)
- Ferry JD, 1989, Viscoelastic Properties of Polymers, 3rd Ed., Wiley, New York, p.369.
- Friess W, Eur. J. Pharm. Biopharm., 45, 113 (1998)
- Friess W, Schlapp M, Eur. J. Pharm. Biopharm., 51, 259 (2001)
- Friess W, Schlapp M, Eur. J. Pharm. Biopharm., 63, 176 (2006)
- Gebhard S, 2000, A Practical Approach to Rheology and Rheometry, 2nd Ed., Gebrueder HAAKE GmbH, Karlsruhe.
- Hsieh TT, Tiu C, Simon GP, Wu RY, J. Non-Newton. Fluid Mech., 86(1-2), 15 (1999)
- Kao N, Bhattacharya SN, Shanks R, Coopes IH, J. Rheol., 42(3), 493 (1998)
- Karaman S, Yilmaz MT, Cankurt H, Kayacier A, Sagdic O, Food Res. Int., 48, 507 (2012)
- Kasapis S, Mitchell JR, Int. J. Biol. Macromol., 29, 315 (2001)
- Kataoka K, Kwon GS, Yokoyama M, Okano T, Sakurai Y, J. Control. Release, 24, 119 (1993)
- Kim JS, Park JW, J. Food Sci., 69, 637 (2004)
- Korhonen M, Hellen L, Hirvonen J, Yliruusi J, Int. J. Pharm., 221, 187 (2001)
- Lai G, Du Z, Li G, Korea-Aust. Rheol. J., 19(2), 81 (2007)
- Lapasin R, Pricl S, 1995, Rheology of Industrial Polysaccharides:Theory and Applications, 1st Ed., Blackie Academic & Professional, London.
- Lee CH, Singla A, Lee Y, Int. J. Pharm., 221, 1 (2001)
- Leonov AI, J. Rheol., 34, 1039 (1990)
- Li C, Liu W, Duan L, Tian Z, Li G, J. Appl. Polym. Sci., 131, 40174 (2014)
- Li C, Tian H, Duan L, Tian Z, Li G, Int. J. Biol. Macromolec., 57, 92 (2013)
- Li C, Tian Z, Liu W, Li G, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 55, 327 (2015)
- Moresi M, Lo Presti S, Mancini M, J. Food Eng., 50(4), 235 (2001)
- Nik WBW, Ani FN, Masjuki HH, Giap SGE, Ind. Crop. Prod., 22, 249 (2005)
- Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM, Biotechnol. Bioeng., 65(1), 83 (1999)
- Yang YL, Kaufman LJ, Biophys. J., 96, 1566 (2009)
- Yoshimura K, Terashima M, Hozan D, Shirai K, J. Agric. Food Chem., 48, 685 (2000)
- Zhang ZK, Li GY, Shi B, J. Soc. Leath. Tech. Ch., 90, 23 (2006)