Korean Journal of Chemical Engineering, Vol.32, No.12, 2429-2433, December, 2015
Titanium-iridium oxide layer coating to suppress photocorrosion during photocatalytic water splitting
E-mail:
Photocatalysts with a small band gap energy have received a great deal of interest due their high solar conversion efficiencies. Cuprous oxide (Cu2O) has attracted attention because of its small bandgap energy, a direct bandgap structure, its suitable band structure for water splitting, high absorption coefficient, non-toxicity, and its large abundance. However, it has poor stability due to the fickle oxidation states of copper. To enhance the stability and the production rate of hydrogen and oxygen, a TiIrOX overlayer was successfully formed on the Cu2O under various synthesis conditions. The composition and oxidation state of the Ir species in the overlayer were optimized through the control of the Ir precursor and the amount of water. The Ir/Ti precursor molar ratio was linearly related to the surface Ir/Ti molar ratio. The addition of water converted the Ir precursor to IrO2. The thickness of the overlayer was controlled by differing the synthesis times of the coating. Then, the largest amounts of hydrogen and oxygen were produced through the optimization of the TiIrOX overlayer with a higher IrO2 fraction and a thicker overlayer.
- Abe R, J. Photochem. Photobiol. C-Photochem. Rev., 11, 179 (2010)
- Maeda K, J. Photochem. Photobiol. C-C-Photochem. Rev., 12, 237 (2011)
- Fujishima A, Honda K, Nature, 238, 37 (1972)
- Chen XB, Shen SH, Guo LJ, Mao SS, Chem. Rev., 110(11), 6503 (2010)
- Hung WH, Chien TM, Tseng CM, J. Phys. Chem. C, 118, 12676 (2014)
- Kato H, Asakura K, Kudo A, J. Am. Chem. Soc., 125(10), 3082 (2003)
- Yamaguti K, Sato S, J. Chem. Soc.-Faraday Trans., 81, 1237 (1985)
- Schrauzer GN, Guth TD, J. Am. Chem. Soc., 99, 7189 (1977)
- Takata T, Domen K, J. Phys. Chem. C, 113, 19386 (2009)
- Kim A, Hwang DW, Bae SW, Kim YG, Lee JS, Korean J. Chem. Eng., 18(6), 941 (2001)
- Diwald O, Thompson TL, Zubkov T, Goralski EG, Walck SD, Yates JT, J. Phys. Chem. B, 108(19), 6004 (2004)
- Ohno T, Akiyoshi M, Umebayashi T, Asai K, Mitsui T, Matsumura M, Appl. Catal. A: Gen., 265(1), 115 (2004)
- Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
- Kalyanasundaram K, Borgarello E, Duonghong D, Gratzel M, Angew. Chem.-Int. Edit., 20, 987 (1981)
- Matsumoto H, Sakata T, Mori H, Yoneyama H, J. Phys. Chem., 100(32), 13781 (1996)
- Hong E, Kim JH, Yu S, Kim JH, Korean J. Chem. Eng., 28(8), 1684 (2011)
- Fu HB, Xu TG, Zhu SB, Zhu YF, Environ. Sci. Technol., 42, 8064 (2008)
- Ma LL, Sun HZ, Zhang YG, Lin YL, Li JL, Yu KWY, Yu Y, Tan M, Wang JB, Nanotechnology, 19 (2008)
- Nie XL, Wei SH, Zhang SB, Phys. Rev. B, 65 (2002)
- Jiang Y, Yuan HK, Chen H, Phys. Chem. Chem. Phys., 17, 630 (2015)
- Yan XG, Xu L, Huang WQ, Huang GF, Yang ZM, Zhan SQ, Long JP, Mater. Sci. Semicond. Process, 23, 34 (2014)
- de Jongh PE, Vanmaekelbergh D, Kelly JJ, J. Electrochem. Soc., 147(2), 486 (2000)
- Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K, Chem. Commun., 357 (1998)
- Pourbaix M, Atlas of electrochemical equilibria in aqueous solutions, National Association of Corrosion Engineers, Houston, Texas (1974).
- Kakuta S, Abe T, Electrochem. Solid State Lett., 12(3), P1 (2009)
- Paracchino A, Mathews N, Hisatomi T, Stefik M, Tilley SD, Gratzel M, Energy Environ. Sci., 5, 8673 (2012)
- Wang CM, Wang CY, J. Nanophoton., 8 (2014)
- Bendavid LI, Carter EA, J. Phys. Chem. B, 117(49), 15750 (2013)
- Kwon Y, Soon A, Han H, Lee H, J. Mater. Chem. A, 3, 156 (2015)
- Liang XD, Gao L, Yang SW, Sun J, Adv. Mater., 21(20), 2068 (2009)