화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.31, 47-50, November, 2015
Post-annealing effects of electroless Ni-B-plated MWCNTs on thermal conductivity of epoxy-based composites
E-mail:,
This study investigated the heat-treatment-induced changes on the surfaces of electroless Ni.B-plated MWCNTs, in addition to the MWCNTs’ resultant effects on the thermal conductivity of epoxy composites. The surfaces of the heat-treated MWCNTs were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The ASTM D5470 standard test was used to record the composites’ thermal conductivity. The surface crystallinity of the MWCNTs was shown to improve with increasing heat-treatment temperatures, and their incorporation increased the thermal conductivity of the epoxy composite. In particular the Ni.B 500/EP sample showed more than 110% enhancement of thermal conductivity compared to the Ni-B 0/EP sample. These results were attributed to the interfacial adhesion between the CNTs and EP matrix in the composites.
  1. Shen S, Henry A, Tong J, Zheng RT, Chen G, Nat. Nanotechnol., 5(4), 251 (2010)
  2. Lin W, Moon KS, Wong CP, Adv. Mater., 21(23), 2421 (2009)
  3. Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC, J. Phys. Chem. C, 111, 7565 (2007)
  4. Luyt AS, Molefi JA, Krump H, Polym. Degrad. Stabil., 91, 1629 (2006)
  5. Sanada K, Tada Y, Shindo Y, Compos. Pt. A-Appl. Sci. Manuf., 40, 724 (2009)
  6. Choi S, Kim J, Compos. Pt. B, 51, 140 (2013)
  7. Choi JR, Park SJ, Polym.(Korea), 37(1), 47 (2013)
  8. Chiu HT, Sukachonmakul T, Kuo MT, Wang YH, Wattanakul K, Appl. Surf. Sci., 292, 928 (2014)
  9. Park SS, Kim NJ, J. Ind. Eng. Chem., 20(4), 1911 (2014)
  10. Choi JR, Lee YS, Park SJ, Polym.(Korea), 37(4), 449 (2013)
  11. Kwon SY, Kwon IM, Kim YG, Lee S, Seo YS, Carbon, 55, 285 (2013)
  12. Qiu L, Zheng XH, Zhu J, Su GP, Tang DW, Carbon, 51, 265 (2013)
  13. Iijima S, Nature, 354, 56 (1991)
  14. Park SJ, Jeong HJ, Nah C, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 385, 13 (2004)
  15. Seo MK, Park SJ, Macromol. Mater. Eng., 289, 368 (2004)
  16. Berber S, Kwon YK, Tomanek D, Phys. Rev. Lett., 84, 4613 (2000)
  17. Kim KS, Park SJ, Anal. Chim. Acta, 25, 17 (2013)
  18. Lee SY, Rhee KY, Nahm SH, Park SJ, J. Solid State Chem., 210, 256 (2014)
  19. Ghozatloo A, Rashidi AM, Shariaty-Niasar M, Int. Commun. Heat Mass Transf., 54, 1 (2014)
  20. Zhong W, Claverie JP, Carbon, 51, 72 (2013)
  21. Choi JR, Rhee KY, Park SJ, Compos. Pt. B-Eng., 80, 379 (2015)
  22. Ye Y, Guo TL, Appl. Surf. Sci., 264, 593 (2013)
  23. Choi JR, Lee YS, Park SJ, J. Ind. Eng. Chem., 20(5), 3421 (2014)
  24. Yim YJ, Rhee KY, Park SJ, Compos. Pt. B-Eng., 76, 286 (2015)
  25. Park SJ, Jang YS, Rhee KY, J. Colloid Interface Sci., 245(2), 383 (2002)
  26. Kim BJ, Lee YS, Park SJ, Int. J. Hydrog. Energy, 33(15), 4112 (2008)
  27. Park SJ, Jang YS, J. Colloid Interface Sci., 237(1), 91 (2001)
  28. Tritt TM (Ed.), Thermal Conductivity: Theory, Properties and Applications (Physics of Solids and Liquids), Springer, 2005.
  29. Choi S, Kim K, Nam J, Shim SE, Carbon, 60, 254 (2013)
  30. Park SM, Shon MY, J. Ind. Eng. Chem., 21, 1258 (2015)
  31. Cho T, Baek I, Lee J, Park S, J. Ind. Eng. Chem., 11(3), 400 (2005)