Polymer(Korea), Vol.37, No.4, 449-454, July, 2013
무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향
Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites
E-mail:
초록
본 연구에서는 무전해 니켈도금에 따른 탄소나노튜브의 표면특성변화가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향에 대하여 살펴보았다. 무전해 니켈도금된 탄소나노튜브의 표면특성은 주사전자 현미경(SEM), X-선 광전자분광기(XPS), X-선 회절분석(XRD)을 통하여 알아보았다. 열전도도는 열전도율 측정 시스템으로 측정하였고, 파괴인성은 만능시험기(UTM)를 이용한 임계응력세기인자(KIC)를 측정하여 분석하였다. 실험 결과, 무전해 니켈도금은 탄소나노튜브의 표면특성의 변화를 가져오며, 니켈도금된 MWCNTs(Ni-MWCNTs)가 들어 있는 경우 미처리 MWCNTs와 비교하여 우수한 열전도도 및 파괴인성을 보였다. 이는 Ni-MWCNTs와 에폭시수지와의 분자간 상호작용의 향상 때문이라 판단된다.
In this work, the effect of electroless Ni-plating of multi-walled carbon nanotubes (MWCNTs) on thermal conductivity and fracture toughness properties of MWCNTs/Al2O3/epoxy composites was investigated. The surface properties of the Ni-plated MWCNTs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD) analyses. Thermal conductivity was tested using a thermal conductivity measuring system. The fracture toughness of the composites was carried out through the critical stress intensity factor
(KIC) measurement. As a result, the electroless Ni-plated MWCNTs led to a significant change of surface characteristics of the MWCNTs. Thermal conductivity and fracture toughness of the MWCNTs/Al2O3/epoxy composites were greater than those of non-treated ones. These results were probably due to the improvement of intermolecular interaction between the Ni-MWCNTs and the matrix resins.
- Schwartz MM, Nanocomposites Materials Handbook, 2nd ed., McGraw-Hill, New York (1992)
- Chung DDL, Appl. Therm. Eng., 21, 1593 (2001)
- Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ, Thermochim. Acta, 430(1-2), 155 (2005)
- Heo GY, Park SJ, Macromol. Res., 17(11), 870 (2009)
- Lee SB, Lee HJ, Hong IK, J. Ind. Eng. Chem., 18(2), 635 (2012)
- Heo GY, Rhee KY, Park SJ, Polym.(Korea), 35(6), 548 (2011)
- Jin FL, Park SJ, Carbon Lett., 14, 1 (2013)
- Iijima S, Nature., 354, 56 (1991)
- Im JS, Kim SJ, Kang PH, Lee YS, J. Ind. Eng. Chem., 15(5), 699 (2009)
- Noh YJ, Kim HS, Kim SY, Carbon Lett., 13, 243 (2012)
- Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M, Carbon., 48, 1369 (2010)
- Kim MT, Rhee KY, Kim HJ, Jung DH, Carbon Lett., 13, 187 (2012)
- Parker WJ, Jenkins RJ, Butler CP, Abbot GL, J. Appl.Phys., 32, 1679 (1961)
- Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G, Polymer, 51(7), 1614 (2010)
- Curtin WA, Sheldon BW, Mater. Today., 7, 44 (2004)
- Zhan GD, Mukherjee AK, Int. J. Appl. Ceram. Technol., 1, 161 (2004)
- Peigney A, Laurent C, Rousset A, J. Eur. Ceram. Soc., 18, 1995 (1998)
- Siegel RW, Chang SK, Ash BJ, Stone J, Ajayan PM, Doremus RW, Schadler LS, Scripta Mater., 44, 2061 (2001)
- Mo CB, Cha SI, Kim KT, Hong SH, Mater. Sci. Eng.A., 395, 124 (2004)
- Park SJ, Kim BJ, Bae KM, An KH, Mater. Sci. Eng.A., 528, 4934 (2011)
- Park SJ, Bae KM, Seo MK, J. Ind. Eng. Chem., 16(3), 337 (2010)
- Hong MS, Bae KM, Lee HS, Park SJ, An KH, Kang SJ, Kim BJ, Appl. Chem. Eng., 22(6), 672 (2011)
- Park SJ, Jun BR, J. Colloid Interface Sci., 284(1), 204 (2005)
- Mcintyre NS, Gook MG, Anal. Chem., 47, 2208 (1975)
- Park SJ, Jang YS, J. Colloid Interface Sci., 263(1), 170 (2003)
- Li H, Wang W, Chen H, Deng JF, J. Non-Cryst. Solids., 281, 31 (2001)
- Ni B, Watanabe T, Phillpot SR, J. Phys. Condens. Matter., 21, 084219 (2009)
- Moisala A, Li Q, Kinloch IA, Windle AH, Compos. Sci. Tech., 66, 1285 (2006)
- Kang DW, Yeo HG, Polym.(Korea), 29(2), 161 (2005)