화학공학소재연구정보센터
Polymer(Korea), Vol.37, No.4, 449-454, July, 2013
무전해 니켈도금된 다중벽 탄소나노튜브의 첨가가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향
Influence of Electroless Ni-plated MWCNTs on Thermal Conductivity and Fracture Toughness of MWCNTs/Al2O3/Epoxy Composites
E-mail:
초록
본 연구에서는 무전해 니켈도금에 따른 탄소나노튜브의 표면특성변화가 알루미나강화 에폭시 복합재료의 열전도도 및 파괴인성에 미치는 영향에 대하여 살펴보았다. 무전해 니켈도금된 탄소나노튜브의 표면특성은 주사전자 현미경(SEM), X-선 광전자분광기(XPS), X-선 회절분석(XRD)을 통하여 알아보았다. 열전도도는 열전도율 측정 시스템으로 측정하였고, 파괴인성은 만능시험기(UTM)를 이용한 임계응력세기인자(KIC)를 측정하여 분석하였다. 실험 결과, 무전해 니켈도금은 탄소나노튜브의 표면특성의 변화를 가져오며, 니켈도금된 MWCNTs(Ni-MWCNTs)가 들어 있는 경우 미처리 MWCNTs와 비교하여 우수한 열전도도 및 파괴인성을 보였다. 이는 Ni-MWCNTs와 에폭시수지와의 분자간 상호작용의 향상 때문이라 판단된다.
In this work, the effect of electroless Ni-plating of multi-walled carbon nanotubes (MWCNTs) on thermal conductivity and fracture toughness properties of MWCNTs/Al2O3/epoxy composites was investigated. The surface properties of the Ni-plated MWCNTs were determined by scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), and X-ray diffraction (XRD) analyses. Thermal conductivity was tested using a thermal conductivity measuring system. The fracture toughness of the composites was carried out through the critical stress intensity factor (KIC) measurement. As a result, the electroless Ni-plated MWCNTs led to a significant change of surface characteristics of the MWCNTs. Thermal conductivity and fracture toughness of the MWCNTs/Al2O3/epoxy composites were greater than those of non-treated ones. These results were probably due to the improvement of intermolecular interaction between the Ni-MWCNTs and the matrix resins.
  1. Schwartz MM, Nanocomposites Materials Handbook, 2nd ed., McGraw-Hill, New York (1992)
  2. Chung DDL, Appl. Therm. Eng., 21, 1593 (2001)
  3. Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ, Thermochim. Acta, 430(1-2), 155 (2005)
  4. Heo GY, Park SJ, Macromol. Res., 17(11), 870 (2009)
  5. Lee SB, Lee HJ, Hong IK, J. Ind. Eng. Chem., 18(2), 635 (2012)
  6. Heo GY, Rhee KY, Park SJ, Polym.(Korea), 35(6), 548 (2011)
  7. Jin FL, Park SJ, Carbon Lett., 14, 1 (2013)
  8. Iijima S, Nature., 354, 56 (1991)
  9. Im JS, Kim SJ, Kang PH, Lee YS, J. Ind. Eng. Chem., 15(5), 699 (2009)
  10. Noh YJ, Kim HS, Kim SY, Carbon Lett., 13, 243 (2012)
  11. Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M, Carbon., 48, 1369 (2010)
  12. Kim MT, Rhee KY, Kim HJ, Jung DH, Carbon Lett., 13, 187 (2012)
  13. Parker WJ, Jenkins RJ, Butler CP, Abbot GL, J. Appl.Phys., 32, 1679 (1961)
  14. Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G, Polymer, 51(7), 1614 (2010)
  15. Curtin WA, Sheldon BW, Mater. Today., 7, 44 (2004)
  16. Zhan GD, Mukherjee AK, Int. J. Appl. Ceram. Technol., 1, 161 (2004)
  17. Peigney A, Laurent C, Rousset A, J. Eur. Ceram. Soc., 18, 1995 (1998)
  18. Siegel RW, Chang SK, Ash BJ, Stone J, Ajayan PM, Doremus RW, Schadler LS, Scripta Mater., 44, 2061 (2001)
  19. Mo CB, Cha SI, Kim KT, Hong SH, Mater. Sci. Eng.A., 395, 124 (2004)
  20. Park SJ, Kim BJ, Bae KM, An KH, Mater. Sci. Eng.A., 528, 4934 (2011)
  21. Park SJ, Bae KM, Seo MK, J. Ind. Eng. Chem., 16(3), 337 (2010)
  22. Hong MS, Bae KM, Lee HS, Park SJ, An KH, Kang SJ, Kim BJ, Appl. Chem. Eng., 22(6), 672 (2011)
  23. Park SJ, Jun BR, J. Colloid Interface Sci., 284(1), 204 (2005)
  24. Mcintyre NS, Gook MG, Anal. Chem., 47, 2208 (1975)
  25. Park SJ, Jang YS, J. Colloid Interface Sci., 263(1), 170 (2003)
  26. Li H, Wang W, Chen H, Deng JF, J. Non-Cryst. Solids., 281, 31 (2001)
  27. Ni B, Watanabe T, Phillpot SR, J. Phys. Condens. Matter., 21, 084219 (2009)
  28. Moisala A, Li Q, Kinloch IA, Windle AH, Compos. Sci. Tech., 66, 1285 (2006)
  29. Kang DW, Yeo HG, Polym.(Korea), 29(2), 161 (2005)