화학공학소재연구정보센터
Polymer(Korea), Vol.35, No.6, 548-552, November, 2011
알킬화가 다중벽탄소나노튜브로 강인화된 에폭시수지의 계면 및 열전도도에 미치는 영향
Influence of Alkylation on Interface and Thermal Conductivity of Multi-walled Carbon Nanotubes-reinforced Epoxy Resin
E-mail:
초록
본 연구에서는 기능화된 다중벽탄소나노튜브를 준비하기 위해서 두 가지 기능화 방법인 산처리와 화학적 아미드화 방법이 수행되었다. 그리고 에폭시/기능화된 다중벽탄소나노튜브 복합재료의 특성이 연구되고 비교되었다. 기능화 방법에 따른 다중벽탄소나노튜브의 표면 관능기를 확인하기 위해 푸리에 변환 적외선 분광기(FTIR)를 사용하였다. 계면 및 열전도도에 미치는 다중벽탄소나노튜브 기능화의 효과는 제타전위차 분석기, 전자주사현미경 그리고 열전도도 분석기에 의해서 연구되었다. 이러한 결과들로 에폭시/기능화된 다중벽탄소나노튜브 복합재료의 열전도도는 dodecylamine과의 그래프팅을 통해 증가될 수 있다는 것을 알 수 있었다. 이것은 DGEBF 에폭시 수지 내에서 dodecylamine과 그래프팅한 다중벽탄소나노튜브의 상대적으로 강한 분산력에 의한 것으로 설명될 수 있었다. 이러한 결과들은 그래프팅한 다중벽탄소나노튜브의 제타전위차 값이 산처리한 다중벽탄소나노튜브의 값보다 더 높은 음의 값을 가지는 결과와 일치하였다.
Two functionalization methods, i.e., acid treatment and chemical amidation were performed to prepare the functionalized multi-walled carbon nanotubes (MWCNT), and the properties of epoxy/functionalized MWCNT composites were investigated and compared. Fourier transform infrared spectroscopy (FTIR) was used to confirm the surface functionality of the MWCNT obtained by the functionalization methods. The effects of the MWCNT functionalization on the interface and thermal conductivity were studied by zeta potential analyzer, scanning electron microscope and thermal conductivity analyzer. From these results, it was confirmed that the thermal conductivity of the epoxy/MWCNT composites could be increased by grafting with dodecylamine. This could be interpreted by relatively strong dispersion forces of the grafting MWCNT with dodecylamine in DGEBF epoxy resin. These results were in good agreement with the results that the zeta potential value of the grafting MWCNT with dodecylamine has a higher negative value than that of MWCNT with acid treatment.
  1. Schwartz MM, Nanocomposites Materials Handbook, 2nd ed., McGraw-Hill, New York (1992)
  2. Terasaki I, Comprehensive Semiconductor Science and Technology, Chapter 1.09, 326 (2011)
  3. Ma PC, Siddiqui NA, Marom G, Kim JK, Composites Part A., 41, 1345 (2010)
  4. Martone A, Formicola C, Giordano M, Zarrelli M, Compos. Sci. Technol., 70, 1154 (2010)
  5. Hou Y, Guo LP, Wang G, J. Electroanal. Chem., 617(2), 211 (2008)
  6. Hong J, Park DW, Shim SE, Carbon Lett., 11, 347 (2010)
  7. Zhou T, Wang X, Liu X, Xiong D, Carbon., 48, 1171 (2010)
  8. Teng CC, Ma CCM, Chiou KC, Lee TM, Shih YF, Mater. Chem. Phys., 126(3), 722 (2011)
  9. Sohi NJS, Bhadra S, Khastgir D, Carbon., 49, 1349 (2011)
  10. Nayak R, Tarkes DP, Satapathy A, Comput. Mater. Sci., 48, 576 (2010)
  11. Shim YS, Park SJ, Carbon Lett., 11, 311 (2010)
  12. Park SJ, Bae KM, Seo MK, J. Ind. Eng. Chem., 16(3), 337 (2010)
  13. Bae DY, Lee HS, Carbon Lett., 11, 83 (2010)
  14. Iijima S, Nature., 354, 56 (1991)
  15. Zhou T, Wang X, Liu X, Xiong D, Carbon., 48, 1171 (2010)
  16. Im JS, Kim SJ, Kang PH, Lee YS, J. Ind. Eng. Chem., 15(5), 699 (2009)
  17. Kim KS, Park SJ, Carbon Lett., 11, 102 (2010)
  18. Park SH, Bandaru PR, Polymer, 51(22), 5071 (2010)
  19. Naseh MV, Khodadadi AA, Mortazavi Y, Pourfayaz F, Alizadeh O, Maghrebi M, Carbon., 48, 1369 (2010)
  20. Yang K, Gu M, Composites Part A., 41, 215 (2010)
  21. Lee SK, Bai BC, Im JS, In SJ, Lee YS, J. Ind. Eng. Chem., 16(6), 891 (2010)
  22. Kim KS, Choi KE, Park SJ, Carbon Lett., 10, 335 (2009)
  23. Heo GY, Park SJ, Macromol. Res., 17(11), 870 (2009)
  24. Shin JW, Jeun JP, Kang PH, J. Ind. Eng. Chem., 15(4), 555 (2009)
  25. Seo MK, Choi KE, Park SH, Hong YT, Park SJ, Carbon Lett., 10, 329 (2009)
  26. Han Z, Fina A, Prog. Polym. Sci., 36, 914 (2011)
  27. Choy CL, Polymer., 18, 984 (1977)
  28. Clancy TC, Frankland SJV, Hinkley JA, Gates TS, Int. J. Therm. Sci., 49, 1555 (2010)
  29. Parker WJ, Jenkins RJ, Butler CP, Abbot GL, J. Appl. Phys., 32, 1679 (1961)
  30. Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G, Polymer, 51(7), 1614 (2010)
  31. Cao BY, Li YW, Kong J, Chen H, Xu Y, Yung KL, Cai A, Polymer, 52(8), 1711 (2011)
  32. Ma PC, Mo SY, Tang BZ, Kim JK, Carbon., 48, 1824 (2010)