Journal of Industrial and Engineering Chemistry, Vol.32, 128-136, December, 2015
Experimental design and kinetic study of ultrasonic assisted transesterification of waste cooking oil over sulfonated carbon catalyst derived from cyclodextrin
E-mail:,
The ultrasonic assisted biodiesel production from waste cooking oil using heterogeneous catalyst was studied. The sulfonated carbon was synthesized via one-step hydrothermal carbonization. The catalyst was characterized by BET, XRD, PSD, SEM-EDX, TGA, FT-IR, XPS and TPD. The surface area, pore size and acid density were found to be 8.2 m2/g, 22.1 nm and 1.87 mmol/g, respectively. The significant parameter and optimum condition for biodiesel production were investigated using 2k factorial and response surface methodology, respectively. The catalytic experimental results showed that catalyst loading of 11.5 wt.%, reaction time of 8.8 min and reaction temperature of 117 ℃ provide the maximum biodiesel yield up to 90.8% in the ultrasonic assisted biodiesel production. For the conventional stirring method, the highest biodiesel yield of 89.5% was obtained with the optimum condition: catalyst loading of 12.3 wt.%, reaction time of 16.1 h and reaction temperature of 136 ℃. The catalyst can be reused up to 12 cycles with slight reduction in biodiesel yield after regeneration. The activation energy of 11.64 kJ/mol was obtained from kinetic model for transesterification.
Keywords:Ultrasonic assisted biodiesel production;Cyclodextrin;2k factorial design;Box-Behnken design;Kinetic
- Simionato D, Basso S, Giacometti GM, Morosinotto T, Biophys. Chem., 82, 71 (2013)
- Lee SB, Han KH, Lee JD, Hong IK, J. Ind. Eng. Chem., 16(6), 1006 (2010)
- Gude VG, Grant GE, Appl. Energy, 109, 135 (2013)
- Lou WY, Zong MH, Duan ZQ, Bioresour. Technol., 99(18), 8752 (2008)
- Atadashi IM, Aroua MK, Abdul Aziz AR, Sulaiman NMN, J. Ind. Eng. Chem., 19(1), 14 (2013)
- Lee DW, Yoo BR, J. Ind. Eng. Chem., 20(6), 3947 (2014)
- Zhang Y, Wong WT, Yung KF, Appl. Energy, 116, 191 (2014)
- Yin P, Chen L, Wang Z, Qu RJ, Liu XG, Xu Q, Ren SH, Fuel, 102, 499 (2012)
- Li M, Zheng Y, Chen YX, Zhu XF, Bioresour. Technol., 154, 345 (2014)
- Zuo DH, Lane J, Culy D, Schultz M, Pullar A, Waxman M, Appl. Catal. B: Environ., 129, 342 (2013)
- Badday AS, Abdullah AZ, Lee KT, Appl. Energy, 105, 380 (2013)
- Hara M, Top. Catal., 53, 805 (2010)
- Fu XB, Chen J, Song XL, Zhang YM, Zhu Y, Yang J, Zhang CW, J. Am. Oil Chem. Soc., 92, 495 (2015)
- Chen GY, Shan R, Shi JF, Yan BB, Bioresour. Technol., 171, 428 (2014)
- Maghami M, Sadrameli SM, Ghobadian B, Appl. Therm. Eng., 75, 575 (2015)
- Ji J, Wang J, Li Y, Yu Y, Xu Z, Ultrason. Sonochem., 44, e411 (2006)
- Stavarache C, Vinatoru M, Nishimura R, Maeda Y, Ultrason. Sonochem., 12, 367 (2005)
- Choedkiatsakul I, Ngaosuwan K, Cravotto G, Assabumrungrat S, Ultrason. Sonochem., 21, 1585 (2014)
- Takase M, Chen Y, Liu H, Zhao T, Yang L, Wu X, Ultrason. Sonochem., 21, 1752 (2014)
- Shahraki H, Entezari MH, Goharshadi EK, Ultrason. Sonochem., 23, 266 (2015)
- Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, Pratap AP, Ultrason. Sonochem., 22, 278 (2015)
- Kumar D, Kumar G, Poonam, Singh CP, Ultrason. Sonochem., 17, 839 (2010)
- Hingu SM, Gogate PR, Rathod VK, Ultrason. Sonochem., 17, 827 (2010)
- Talebian-Kiakalaieh A, Amin NAS, Zarei A, Noshadi I, Appl. Energy, 102, 283 (2013)
- Shu Q, Zhang Q, Xu GH, Nawaz Z, Wang DZ, Wang JF, Fuel Process. Technol., 90(7-8), 1002 (2009)
- Shu Q, Nawaz Z, Gao JX, Liao YH, Zhang Q, Wang DZ, Wang JF, Bioresour. Technol., 101(14), 5374 (2010)
- Shu Q, Gao JX, Nawaz ZS, Liao YH, Wang DZ, Wang JF, Appl. Energy, 87(8), 2589 (2010)
- Miao SJ, Shanks BH, J. Catal., 279(1), 136 (2011)
- Liu YJ, Lotero E, Goodwin JG, J. Catal., 242(2), 278 (2006)
- Mootabadi H, Salamatinia B, Bhatia S, Abdullah AZ, Fuel, 89(8), 1818 (2010)
- Freedman B, Butterfield RO, Pryde EH, J. Am. Oil Chem. Soc., 63, 1375 (1986)