화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.1, 238-247, January, 2016
Application of novel nanobiocomposites for removal of nickel(II) from aqueous environments: Equilibrium, kinetics, thermodynamics and ex-situ studies
E-mail:
The current study presents a novel approach for the removal of Ni(II) from aqueous environments using plant gum-based (PG) and clay-based (CL) nanobiocomposite (NBC) composed of ZnO nanoparticles and chitosan. Parameters like pH, contact time, temperature, initial metal concentration and adsorbent dosage were optimized. Under optimized conditions, maximum removal of Ni(II) was noted as 90.1% and 95.5% in the case of PG-NBC and CLNBC, respectively. Equilibrium studies suggested a homogeneous mode of adsorption. Good linearity was observed for the pseudo-first order kinetic model, suggesting a physical mode of adsorption. Thermodynamic studies showed an endothermic and spontaneous nature of adsorption. The mechanism was further elucidated using SEM, EDX, AFM and FT-IR analysis. Ex-situ studies showed a maximum Ni(II) removal of 87.34% from electroplating wastewater using CL-NBC in column mode. Regeneration studies suggested that CL-NBC could be consistently reused up to 4 cycles.
  1. He L, Wang BB, Liu DD, Qian KS, Xu HB, Korean J. Chem. Eng., 31(2), 343 (2014)
  2. Mukherjee AL, Environmental Pollution and Health Hazardscauses and control, Golgotia Publications, New Delhi (1986).
  3. Parker SP, Encyclopedia of Environmental Science, 2nd Ed. McGraw Hill, New York (1980).
  4. Kwak IS, Won SW, Choi SB, Mao J, Kim S, Chung BW, Yun YS, Korean J. Chem. Eng., 28(3), 927 (2011)
  5. Can MY, Kaya Y, Algur OF, Bioresour. Technol., 97(14), 1761 (2006)
  6. Wu DB, Niu CJ, Li DQ, Bai Y, J. Alloy. Compd., 374, 442 (2004)
  7. Runtti H, Tuomikoskia S, Kangas T, Lassi U, Kuokkanen T, Ramo J, J. Water Process Eng., 4, 12 (2014)
  8. Celis R, Adelano MA, Hermosin MC, Cornejo J, J. Hazard. Mater., 9, 67 (2012)
  9. Hassani A, Soltani RDC, Karaca S, Khataee A, J. Ind. Eng. Chem., 21, 1197 (2015)
  10. Dehaghi SM, Rahmanifar B, Moradi AM, Azar PA, J. Saudi Chem. Soc., 18, 348 (2014)
  11. An JH, Dultz S, Clay Clay Min., 56, 549 (2008)
  12. Islam M, Mishra PC, Patel R, J. Hazard. Mater., 189(3), 755 (2011)
  13. Jiang HL, Chen PH, Luo SL, Tu XM, Cao Q, Shu M, Appl. Surf. Sci., 284, 942 (2013)
  14. Marquez GE, Ribeiro MJP, Ventura JM, Labrincha JA, Ceram. Int., 30, 111 (2004)
  15. Vieira MGA, Neto AFA, Gimenes ML, da Silva MGC, J. Hazard. Mater., 177(1-3), 362 (2010)
  16. Olgun A, Atar N, J. Ind. Eng. Chem., 18(5), 1751 (2012)
  17. Juby KA, Dwivedi C, Kumar M, Kota S, Misra HS, Bajaj PN, Carbohydr. Polym., 89, 906 (2012)
  18. Das D, Varghese LR, Das N, Desalination, 360, 35 (2015)
  19. Kermani AS, Miri S, Korean J. Chem. Eng., 10.1007/s11814-014-0285-y. (2015)
  20. Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
  21. Freundlich HMF, J. Phys. Chem., 57, 385 (1906)
  22. Dubinin MM, Chem. Rev., 60, 235 (1960)
  23. Ho YS, Scientometrics, 59, 171 (2004)
  24. Ho YS, Water Res., 40, 119 (2006)
  25. Das D, Basak G, Lakshmi V, Das N, Biochem. Eng. J., 64, 30 (2012)
  26. Khan SA, Rehman R, Khan MA, Waste Manage., 15, 271 (1995)
  27. Vijayaraghavan K, Balasubramanian R, Chem. Eng. J., 163(3), 337 (2010)
  28. Vinodhini V, Das N, Desalination, 264(1-2), 9 (2010)
  29. Yang ST, Li JX, Shao DD, Hu J, Wang XK, J. Hazard. Mater., 166(1), 109 (2009)
  30. Parab H, Joshi S, Shenoy N, Lali A, Sarma US, Sudersanan M, Process Biochem., 41, 609 (2006)
  31. Malkoc E, Nuhoglu Y, J. Hazard. Mater., 127(1-3), 120 (2005)
  32. Malkoc E, J. Hazard. Mater., 137(2), 899 (2006)
  33. Popuri SR, Vijaya Y, Boddu VM, Abburi K, Bioresour. Technol., 100(1), 194 (2009)
  34. Das D, Das N, Mathew L, J. Hazard. Mater., 184(1-3), 765 (2010)
  35. Vinod VTP, Sashidhar RB, Sreedhar B, J. Hazard. Mater., 178(1-3), 851 (2010)
  36. Jeon C, Cha JH, J. Ind. Eng. Chem., 10.1016/j.jiec.2014.09.016. (2014)
  37. Charumathi D, Das N, Desalination, 285, 22 (2012)
  38. Das D, Varshini JS, Das N, Miner. Eng., 69, 40 (2014)