화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.34, 292-299, February, 2016
Synthesis, structure and adsorption properties of nonstoichiometric carbon nitride in comparison with nitrogen-containing carbons
E-mail:
The samples of nonstoichiometric carbon nitride characterized by spatial ordering, large pore volume (up to 0.8 cm3/g) and specific surface area (up to 585 m2/g) were obtained via matrix carbonization of ethylenediamine in the presence of carbon tetrachloride in mesoporous molecular sieves KIT-6 and MCF as exotemplates. In contrast to nitrogen-containing carbons (obtained by modification of carbon samples with nitrogen in the result of compatible thermal treatment of the initial porous carbon with melamine) nonstoichiometric carbon nitride contains much more nitrogen (up to 13.7 wt.% (C/N = 6), compared with preceding 0.6 wt.%) and increased the quantity of basic nitrogen-containing groups (in particular, amino groups)-up to 0.68 mmol/g (vs. 0.46 mmol/g). The increase of adsorption capacity towards hydrogen and carbon dioxide: adsorption potential, differential heat of CO2 adsorption, specific adsorption on the pore surface.from 5.4 to 7.3 mmol H2/m2 and from 2.2 to 5.4 mmol CO2/m2 for carbon and synthesized samples of nonstoichiometric carbon nitride, respectively, due to the incorporation of nitrogen atoms into the carbon framework was noticed.
  1. Vinu A, Adv. Funct. Mater., 18(5), 816 (2008)
  2. Liu L, Ma D, Zheng H, Li X, Cheng M, Bao X, Microporous Mesoporous Mater., 110, 216 (2008)
  3. Vinu A, Ariga K, Mori T, Nakanishi T, Hishita S, Golberg D, Bando Y, Adv. Mater., 17(13), 1648 (2005)
  4. Srinivasu P, Vinu A, Hishita S, Sasaki T, Ariga K, Mori T, Microporous Mesoporous Mater., 108, 340 (2008)
  5. Talapaneni SN, Mane GP, Mano A, Anand C, Dhawale DS, Mori T, Vinu A, ChemSusChem, 5(4), 700 (2012)
  6. Sun LB, Liu XQ, Zhou HC, Chem. Soc. Rev., 44, 5092 (2015)
  7. Wang Y, Wang X, Antonietti M, Zhang Y, ChemSusChem, 3, 435 (2010)
  8. Li Q, Yang J, Feng D, Wu Z, Wu Q, Park SS, Zhao D, Nano Res., 3, 632 (2010)
  9. Thomas A, Fischer A, Goettmann F, Antonietti M, Muller JO, Schlogl R, Carlsson JM, J. Mater. Chem., 18, 4893 (2008)
  10. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ, Energy Environ. Sci., 5, 6717 (2012)
  11. Talapaneni SN, Anandan S, Mane GP, Anand C, Dhawale DS, Varghese S, Mano A, Mori T, Vinu A, J. Mater. Chem., 22, 9831 (2012)
  12. Kailasam K, Epping JD, Thomas A, Losse S, Junge H, Energy Environ. Sci., 4, 4668 (2011)
  13. Yan H, Chem. Commun., 48, 3430 (2012)
  14. Xu J, Wang YJ, Zhu YF, Langmuir, 29(33), 10566 (2013)
  15. Zhang Y, Liu J, Wu G, Chen W, Nanoscale, 4, 5300 (2012)
  16. Kouvetakis J, Todd M, Wilkens B, Bandari A, Cave N, Chem. Mater., 6, 811 (1994)
  17. Montigaud H, Tanguy B, Demazeau G, Alves I, Courjault S, J. Mater. Sci., 35(10), 2547 (2000)
  18. Gu Y, Chen L, Shi L, Ma J, Yang Z, Qian Y, Carbon, 41, 2674 (2003)
  19. Zhang ZH, Leinenweber K, Bauer M, Garvie LAJ, McMillan PF, Wolf GH, J. Am. Chem. Soc., 123(32), 7788 (2001)
  20. Guo QX, Xie Y, Wang XJ, Lv SC, Hou T, Liu XM, Chem. Phys. Lett., 380(1-2), 84 (2003)
  21. Xu J, Chen T, Jiang Q, Li YX, Chem. Asian J., 9, 3269 (2014)
  22. Anand C, Priya SV, Lawrence G, Mane GP, Dhawale DS, Prasad KS, Balasubramanian VV, Wahab MA, Vinu A, Catal. Today, 204, 164 (2013)
  23. Xu J, Long KZ, Chen T, Xue B, Li YX, Cao Y, Catal. Sci. Technol., 3, 3192 (2013)
  24. Min BH, Ansari MB, Mo YH, Park SE, Catal. Today, 204, 156 (2013)
  25. Zhao Z, Dai Y, Lin J, Wang G, Chem. Mater., 26, 3151 (2014)
  26. Deng QF, Liu L, Lin XZ, Du GH, Liu YP, Yuan ZY, Chem. Eng. J., 203, 63 (2012)
  27. Zhou Y, Tang L, Zeng G, Chen J, Cai Y, Zhang Y, Yang G, Liu Y, Zhang C, Tang W, Biosens. Bioelectron., 61, 519 (2014)
  28. Jia L, Wang H, Dhawale D, Anand C, Wahab MA, Ji Q, Ariga K, Vinu A, Chem. Commun., 50, 5976 (2014)
  29. Lysenko ND, Opanasenko MV, Yaremov PS, Shvets AV, Il’in VG, Theor. Exp. Chem., 46, 51 (2010)
  30. Shcherban ND, Filonenko SM, Yaremov PS, Dyadyun VS, J. Mater. Sci., 49(12), 4354 (2014)
  31. Horvath G, Kawazoe K, J. Chem. Eng. Jpn., 16, 470 (1983)
  32. Gregg SG, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, New York, NY, 1982.
  33. Chen F, Xu XJ, Shen S, Kawi S, Hidajat K, Microporous Mesoporous Mater., 75, 231 (2004)
  34. Barrett EP, Joyner LG, Halenda PP, J. Am. Chem. Soc., 73, 373 (1951)
  35. Adolphs J, Appl. Surf. Sci., 253(13), 5645 (2007)
  36. Qiu Y, Gao L, Chem. Commun., 18, 2378 (2003)
  37. Feuston BP, Higgins JB, J. Phys. Chem., 98(16), 4459 (1994)
  38. Kroke E, Schwarz M, Coord. Chem. Rev., 248, 493 (2004)
  39. Seredych M, Hulicova-Jurcakova D, Lu GQ, Bandosz TJ, Carbon, 46, 1475 (2008)
  40. Zhou M, Pu F, Wang Z, Guan S, Carbon, 68, 185 (2014)
  41. Xu B, Hou S, Cao G, Wu F, Yang Y, J. Mater. Chem., 22, 19088 (2012)
  42. Xia Y, Yang Z, Zhu Y, J. Mater. Chem. A, 1, 9365 (2013)
  43. Xia Y, Zhu Y, Tang Y, Carbon, 50, 5543 (2012)