화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.33, No.3, 1075-1079, March, 2016
Facile synthesis of bimetallic Ni-Cu nanoparticles using liquid phase plasma method
E-mail:
A liquid phase plasma (LPP) process was used to synthesize of Ni-Cu bimetallic particles in aqueous solution. The bimetallic particles were well separated, and the particle size increased with increasing LPP process duration, causing these bimetallic particles to be well separated as the particle size increased when the LPP process time increased. The earliest stages of LPP formed dendrite-shaped nanoparticles, while spherical particles were generated in the later stages. While spherical Ni-Cu bimetallic nanoparticles were mostly observed in the initial stage, flower-like shaped Ni-Cu bimetallic nanoparticles were mostly observed after longer durations of plasma treatment. The solution pH decreased with increasing LPP process time.
  1. Aiello R, Fiscus JE, zur Loye HC, Amiridis MD, Appl. Catal. A: Gen., 192(2), 227 (2000)
  2. Bera P, Aruna ST, Patil KC, Hegde MS, J. Catal., 186(1), 36 (1999)
  3. Hibino T, Hashimoto A, Inoue T, Tokuno JI, Yoshida SI, Sano M, Science, 288, 2031 (2000)
  4. Khodashenas B, Ghorbani HR, Korean J. Chem. Eng., 31(7), 1105 (2014)
  5. Park SD, Vohs JM, Gorte RJ, Nature, 404(6775), 265 (2000)
  6. Rahemi N, Haghighi M, Babaluo AA, Jafari MF, Allahyari S, Korean J. Chem. Eng., 31(9), 1553 (2014)
  7. Feng J, Zhang CP, J. Colloid Interface Sci., 293(2), 414 (2006)
  8. Cangiano MD, Carreras AC, Ojeda MW, Ruiz MD, J. Alloy. Compd., 458, 405 (2008)
  9. Carroll KJ, Reveles JU, Shultz MD, Khanna SN, Carpenter EE, J. Phys. Chem. C, 115, 2656 (2011)
  10. Wang HY, Baker RTK, J. Phys. Chem. B, 108(52), 20273 (2004)
  11. De Rogatis L, Montini T, Lorenzut B, Fornasiero P, Energy Environ. Sci., 1, 501 (2008)
  12. Huang TJ, Jhao SY, Appl. Catal. A: Gen., 302(2), 325 (2006)
  13. Asedegbega-Nieto E, Bachiller-Baeza B, Guerrero-Ruiz A, Rodriguez-Ramos I, Appl. Catal. A: Gen., 300(2), 120 (2006)
  14. Li P, Liu J, Nag N, Crozier PA, J. Catal., 262(1), 73 (2009)
  15. Yin AY, Wen C, Guo XY, Dai WL, Fan KNA, J. Catal., 280(1), 77 (2011)
  16. Lipshutz BH, Nihan DM, Vinogradova E, Taft BR, Boskovic ZV, Organic Lett., 10, 4279 (2008)
  17. Guczi L, Catal. Today, 101(2), 53 (2005)
  18. Lee H, Park SH, Jung SC, Yun JJ, Kim SJ, Kim DH, J. Mater. Res., 28, 1105 (2013)
  19. Lee H, Park SH, Kim SJ, Park YK, Kim BH, Jung SC, Microelectron. Eng., 126, 153 (2014)
  20. Lee DJ, Kim SJ, Lee J, Lee H, Kim HG, Jung SC, Sci. Adv. Mater., 6, 1599 (2014)
  21. Lee H, Chung M, Ahn HG, Kim SJ, Park YK, Jung SC, Int. J. Precision Engineering and Manufacturing, 16, 1305 (2015)
  22. Lee H, Park SH, Seo SG, Kim SJ, Kim SC, Park YK, Jung SC, Current Nanoscience, 10, 7 (2014)
  23. Sansonetti JE, Martin WC, J. Phys. Chem. Ref Data, 34, 1559 (2005)
  24. Litzen U, Brault JW, Thorne AP, Physica. Scripta, 47, 628 (1993)
  25. Pootawang P, Saito N, Takai O, Thin Solid Films, 519(20), 7030 (2011)
  26. Potocky S, Saito N, Takai O, Thin Solid Films, 518(3), 918 (2009)
  27. Saito N, Hieda J, Takai O, Thin Solid Films, 518(3), 912 (2009)
  28. Baroch P, Anita V, Saito N, Takai O, J. Electrost., 66, 294 (2008)
  29. Sun B, Sato M, Harano A, Clements JS, J. Electrost., 43, 115 (1998)
  30. Guan J, Liu L, Xu L, Sun Z, Zhang Y, CrystEngComm, 13, 2636 (2011)
  31. Takai O, Pure Appl. Chem., 80, 2003 (2008)
  32. Tsuji M, Miyamae N, Hashimoto M, Nishio M, Hikino S, Ishigami N, Tanaka I, Colloids Surf. A: Physicochem. Eng. Asp., 302, 587 (2008)
  33. Rodriguez-Fernandez J, Perez-Juste J, Mulvaney P, Liz-Marzan LM, J. Phys. Chem. B, 109(30), 14257 (2005)