화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.26, No.1, 8-12, January, 2016
이속압연에 의해 가공된 Cu-Ni-Si 합금의 미세 조직 및 기계적 성질
Microstructure and Mechanical Properties of Cu-Ni-Si Alloy Deformed by Differential Speed Rolling
E-mail:
Effects of conventional rolling(CR) and differential speed rolling(DSR) on the microstructure and mechanical properties of Cu-Ni-Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant with a differential speed ratio of 2:1. The conventional rolling in which the rolling speed of upper and lower rolls is identical was performed under identical rolling conditions. The shear strain introduced by the CR showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The microstrucure and texture development of the as-rolled copper alloy did not show any significant difference between CR and DSR. The tensile strength of the DSR processed specimen was larger than that of the CR processed specimen. The effects of rolling methods on the microstructure and mechanical properties of the as-rolled copper alloy are discussed in terms of the shear strain.
  1. Cui Q, Ohori K, Mater. Sci. Technol., 16, 1095 (2000)
  2. Hirohata T, Masaki S, Shima S, J. Mater. Process. Technol., 111, 113 (2001)
  3. Lim CY, Han SZ, Lee SH, Met. Mater. Int., 12, 225 (2006)
  4. Kim KH, Lee DH, Acta Mater., 49, 2583 (2001)
  5. Sakai T, Hamada S, Saito Y, Scr. Mater., 44, 2569 (2001)
  6. Lee SH, Yoon DJ, Sakai T, Kim SH, Han SZ, J. Korean Inst. Met. Mater., 47, 121 (2009)
  7. Lee SH, Yoon DJ, Euh K, Kim SH, Han SZ, J. Korean Inst. Met. Mater., 48, 77 (2010)
  8. Lee SH, Lim JY, Utsunomiya H, Euh K, Han SZ, J. Korean Inst. Met. Mater., 48, 942 (2010)
  9. Lee SH, Lim JY, Yoon DJ, Euh K, Han SZ, Korean J. Mater. Res., 21(1), 15 (2011)
  10. Lee SH, Korean J. Mater. Res., 22(11), 581 (2012)