화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.39, 66-76, July, 2016
Fabrication of promoted TiO2 nanotubes with superior catalytic activity against TiO2 nanoparticles as the catalyst of oxidesulfurization process
E-mail:
TiO2 nanoparticles (TNP) were converted to TiO2 nanotubes (TNT) and investigated as the catalyst for oxidative desulfurization of dibenzothiophene. The TNT was promoted with Cu (Cu-TNT) to increase the ODS efficiency. The textural and structural properties of catalysts were characterized and confirmed by XRD, FESEM, EDS, TEM, FTIR and BET analysis. The maximum conversion over TNT was achieved at the temperature = 326.6 K, oxidant/DBT = 13.9 mol/mol and catalyst/fuel = 10 g/l. At the optimum condition, TNT has shown 10% higher efficiency compared with TNP catalyst. The promoted TNT with less that 1 wt% Cu accelerated the ODS rate of reaction with 10% excess conversion, to achieve 98% conversion of DBT.
  1. Zheng D, Zhu WS, Xun SH, Zhou MM, Zhang M, Jiang W, Qin YJ, Li HM, Fuel, 159, 446 (2015)
  2. Memana NM, Pourkhalil M, Rashidi A, ZareNezhad B, J. Ind. Eng. Chem., 20(6), 4054 (2014)
  3. Yang CP, Zhao K, Cheng Y, Zeng GM, Zhang MM, Shao JJ, Lu L, Sep. Purif. Technol., 163, 153 (2016)
  4. Ribeiro SO, Juliao D, Cunha-Silva L, Domingues VF, Valenca R, Ribeiro JC, de Castro B, Balula SS, Fuel, 166, 268 (2016)
  5. Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H, J. Ind. Eng. Chem., 20(5), 2769 (2014)
  6. Lu HY, Ren WZ, Liao WP, Chen W, Li Y, Suo ZH, Appl. Catal. B: Environ., 138, 79 (2013)
  7. Memana NM, Zarenezhad B, Rashidi A, Hajjar Z, Esmaeili E, J. Ind. Eng. Chem., 22, 179 (2015)
  8. Tang L, Luo G, Zhu M, Kang L, Dai B, J. Ind. Eng. Chem., 19(2), 620 (2013)
  9. Rafiee E, Rezaei S, J. Taiwan Inst. Chem. Eng., 61, 174 (2016)
  10. Shang H, Zhang H, Du W, Liu Z, J. Ind. Eng. Chem., 19(5), 1426 (2013)
  11. Leng KY, Sun YY, Zhang X, Yu M, Xu W, Fuel, 174, 9 (2016)
  12. Zhang K, Zhang FJ, Chen ML, Oh W, Ultrason. Sonochem., 18, 765 (2011)
  13. Kong L, Li G, Wang X, Chin. J. Catal., 25, 775 (2004)
  14. Jose N, Sengupta S, Basu JK, Fuel, 90(2), 626 (2011)
  15. Kong LY, Li G, Wang XS, Wu B, Energy Fuels, 20(3), 896 (2006)
  16. Huang D, Wang YJ, Cui YC, Luo GS, Microporous Mesoporous Mater., 116, 378 (2008)
  17. Matsuzawa S, Tanaka J, Sato S, Ibusuki T, J. Photochem. Photobiol. A-Chem., 149, 183 (2002)
  18. Li LT, Zhang JS, Shen C, Wang YJ, Luo GS, Fuel, 167, 9 (2016)
  19. Cedeno-Caero L, Ramos-Luna M, Mendez-Cruz M, Ramirez-Solis J, Catal. Today, 172(1), 189 (2011)
  20. Lorencon E, Alves DCB, Krambrock K, Avila ES, Resende RR, Ferlauto AS, Lago RM, Fuel, 132, 53 (2014)
  21. Lu X, Li X, Qian J, Miao N, Yao C, Chen Z, J. Alloy. Compd., 661, 363 (2016)
  22. Zhu KX, Hu GX, J. Supercrit. Fluids, 94, 165 (2014)
  23. Ou HH, Lo SL, Sep. Purif. Technol., 58(1), 179 (2007)
  24. Sekino T, Top. Appl. Phys., 117, 17 (2010)
  25. Karaca H, Safonova OV, Chambrey S, Fongarland P, Roussel P, Griboval-Constant A, Lacroix M, Khodakov AY, J. Catal., 277(1), 14 (2011)
  26. Wanga C, Zhu W, Xua Y, Xua H, Zhanga M, Chaoa Y, Yina S, Lia H, Wang J, Ceram. Int., 40, 11627 (2014)
  27. Yang L, Li J, Yuan XD, Shen J, Qi YT, J. Mol. Catal. A-Chem., 262(1-2), 114 (2007)
  28. Yazu K, Yamamoto Y, Furuya T, Miki K, Ukegawa K, Energy Fuels, 15(6), 1535 (2001)
  29. Hernandez-Maldonado AJ, Yang RT, AIChE J., 50(4), 791 (2004)
  30. Wang YH, Yang FH, Yang RT, Heinzel JM, Nickens AD, Ind. Eng. Chem. Res., 45(22), 7649 (2006)