화학공학소재연구정보센터
Polymer(Korea), Vol.23, No.3, 384-392, May, 1999
폴리페닐렌숙시네이트의 비섭동 크기
Unperturbed Dimension of Poly(p-phenylene succinate)
E-mail:
초록
Poly(ethylene terephthalate) (PET)와 에스테르기의 결합방향이 반대 형태인 poly(p-phenylene succinate) (PPSc)의 θ조건과 용해성은 PET보다 좋지 않았는데 phenol/1.1,2,2-tetrachloroethane(TCE) (6/4 w/w)와 phenol/TCE(4/6 w/w)은 PPSc의 양용매이었다. Dichloroacetic acid, m-cresol/TCE(5/5 w/w), phenol/1,2-dichloroethane(7/3 w/w), 그리고 phenol/m-cresol(5/5 w/w)에서 결정된 PPSc의 θ온도는 8.7-60 ℃의 범위에 있었으며 이들 θ온도에서 결정된 PPSc의 Kθ값은 29-33.5 x 10-4(dL/g)이었고 계산된 제곱평균 크기비(( /M))는 1.10-1.22이었다. PET의 Kθ값이 22-25 x 10-4(dL/g)임을 고려할 때 PPSc가 PET보다 더 강직한 쇄임을 알았다.
θcondition and unperturbed dimension of poly(p-phenylene succinate) (PPSc) having the inversed ester group with respect to poly(ethylene terephthalate) (PET) were evaluated from the intrinsic viscosity measurement. PPSc had a lower solubility than PET and phenol/1,1,2,2-tetrachloroethane(TCE) (6/4 w/w) and phenol/TCE(4/6 w/w) were good solvents for PPSc. θtemperatures determined from polymer solutions in dichloroacetic acid, m-cresol/TCE(5/5 w/w), phenol/ 1,2-dichloroethane(7/3 w/w), and phenol/m-cresol(5/5 w/w) were in the range of 9-60 ℃. The Kθ values of PPSc were in the range of 29-34 × 10-4(dL/g) and calculated mean-square dimension ratios ((0 >/M)) were in the range of 1.10-1.22 under θ condition. Considering that the Kθ values of PET reported are in the range of 22-25 × 10-4(dL/g), PPSc has a more rigid chain conformation than PET.
  1. Jin JJ, "Liquid Crystalline Polymers," p. 237, A Series of Daewoo Scientific Books, Seoul (1986)
  2. Jin JI, Lee SC, Polym.(Korea), 9(5), 454 (1985)
  3. Jin JJ, Choi HS, Choi EJ, J. Polym. Sci. B: Polym. Phys., 28, 531 (1990) 
  4. Coulter P, Windle AH, Macromolecules, 22, 1129 (1989) 
  5. Loffier R, Navard P, Macromolecules, 25, 7172 (1992) 
  6. Goodman I, "Encyclopedia of Polymer Science and Engineering," vol. 12, p. 9, John Wiley & Sons, New York (1989)
  7. Youk JH, Ha WS, Jo WH, Park CR, J. Appl. Polym. Sci., 66(8), 1575 (1997) 
  8. Youk JH, Ha WS, Lee SW, Jo WH, J. Appl. Polym. Sci., in press
  9. Hergenrother WL, Nelson CJ, J. Polym. Sci. A: Polym. Chem., 12, 5905 (1974)
  10. Phol HA, Anal. Chem., 26, 1614 (1954) 
  11. Borman WFH, J. Appl. Polym. Sci., 22, 2119 (1978) 
  12. Hergenrother WL, Nalson CJ, J. Polym. Sci. A: Polym. Chem., 12, 2905 (1984)
  13. Brandrup J, Immergut EH, "Polymer Handbook," 2nd Ed., IV-25, Wiley Interscience, New York (1975)
  14. Flory PJ, "Principle of Polymer Chemistry," Cornell University Press, Ithaca (1953)
  15. Moore WR, Sanderson D, Polymer, 9, 153 (1968) 
  16. Flory PJ, Spurr OK, Carpenter DK, J. Polym. Sci., 27, 231 (1958) 
  17. Stockmayer WH, Fixman M, J. Polym. Sci. C: Polym. Lett., 1, 137 (1963)
  18. Yamakawa H, "Modern Theory of Polymer Solutions," Harper and Row, New York (1971)
  19. Flory PJ, "Statistical Mechanics of Chain Molecules," p. 30, John Wiley, New York (1969)
  20. Jeon SI, Jhon MS, J. Polym. Sci. A: Polym. Chem., 22, 3555 (1984)
  21. Rosen SL, "Fundamental Principles of Polymeric Materials," p. 81, John Wiley & Sons, New York (1982)
  22. Lath D, Bohdancecky M, J. Polym. Sci. C: Polym. Lett., 15, 555 (1977)
  23. Meyerhoff G, Shimotsuma S, Makromol. Chem., 135, 195 (1970) 
  24. Wallach ML, Makromol. Chem., 103, 19 (1967) 
  25. Tuzar Z, Volsicky V, Bohdanecky M, Makromol. Chem., 180, 1399 (1979) 
  26. Aharoni SM, Makromol. Chem., 179, 1867 (1978) 
  27. Kamide K, Miyazaki Y, Kobayashi H, Polym. J., 9, 317 (1977) 
  28. Krigbaum WR, J. Polym. Sci., 38, 213 (1958) 
  29. Van Krevelen DW, "Properties of Polymer," p. 259, Elsevier, New York (1990)