Polymer(Korea), Vol.23, No.3, 384-392, May, 1999
폴리페닐렌숙시네이트의 비섭동 크기
Unperturbed Dimension of Poly(p-phenylene succinate)
E-mail:
초록
Poly(ethylene terephthalate) (PET)와 에스테르기의 결합방향이 반대 형태인 poly(p-phenylene succinate) (PPSc)의 θ조건과 용해성은 PET보다 좋지 않았는데 phenol/1.1,2,2-tetrachloroethane(TCE) (6/4 w/w)와 phenol/TCE(4/6 w/w)은 PPSc의 양용매이었다. Dichloroacetic acid, m-cresol/TCE(5/5 w/w), phenol/1,2-dichloroethane(7/3 w/w), 그리고 phenol/m-cresol(5/5 w/w)에서 결정된 PPSc의 θ온도는 8.7-60 ℃의 범위에 있었으며 이들 θ온도에서 결정된 PPSc의 Kθ값은 29-33.5 x 10-4(dL/g)이었고 계산된 제곱평균 크기비(( /M)∞)는 1.10-1.22이었다. PET의 Kθ값이 22-25 x 10-4(dL/g)임을 고려할 때 PPSc가 PET보다 더 강직한 쇄임을 알았다.
θcondition and unperturbed dimension of poly(p-phenylene succinate) (PPSc) having the inversed ester group with respect to poly(ethylene terephthalate) (PET) were evaluated from the intrinsic viscosity measurement. PPSc had a lower solubility than PET and phenol/1,1,2,2-tetrachloroethane(TCE) (6/4 w/w) and phenol/TCE(4/6 w/w) were good solvents for PPSc. θtemperatures determined from polymer solutions in dichloroacetic acid, m-cresol/TCE(5/5 w/w), phenol/ 1,2-dichloroethane(7/3 w/w), and phenol/m-cresol(5/5 w/w) were in the range of 9-60 ℃. The Kθ values of PPSc were in the range of 29-34 × 10-4(dL/g) and calculated mean-square dimension ratios ((0 >/M)∞) were in the range of 1.10-1.22 under θ condition. Considering that the Kθ values of PET reported are in the range of 22-25 × 10-4(dL/g), PPSc has a more rigid chain conformation than PET.
- Jin JJ, "Liquid Crystalline Polymers," p. 237, A Series of Daewoo Scientific Books, Seoul (1986)
- Jin JI, Lee SC, Polym.(Korea), 9(5), 454 (1985)
- Jin JJ, Choi HS, Choi EJ, J. Polym. Sci. B: Polym. Phys., 28, 531 (1990)
- Coulter P, Windle AH, Macromolecules, 22, 1129 (1989)
- Loffier R, Navard P, Macromolecules, 25, 7172 (1992)
- Goodman I, "Encyclopedia of Polymer Science and Engineering," vol. 12, p. 9, John Wiley & Sons, New York (1989)
- Youk JH, Ha WS, Jo WH, Park CR, J. Appl. Polym. Sci., 66(8), 1575 (1997)
- Youk JH, Ha WS, Lee SW, Jo WH, J. Appl. Polym. Sci., in press
- Hergenrother WL, Nelson CJ, J. Polym. Sci. A: Polym. Chem., 12, 5905 (1974)
- Phol HA, Anal. Chem., 26, 1614 (1954)
- Borman WFH, J. Appl. Polym. Sci., 22, 2119 (1978)
- Hergenrother WL, Nalson CJ, J. Polym. Sci. A: Polym. Chem., 12, 2905 (1984)
- Brandrup J, Immergut EH, "Polymer Handbook," 2nd Ed., IV-25, Wiley Interscience, New York (1975)
- Flory PJ, "Principle of Polymer Chemistry," Cornell University Press, Ithaca (1953)
- Moore WR, Sanderson D, Polymer, 9, 153 (1968)
- Flory PJ, Spurr OK, Carpenter DK, J. Polym. Sci., 27, 231 (1958)
- Stockmayer WH, Fixman M, J. Polym. Sci. C: Polym. Lett., 1, 137 (1963)
- Yamakawa H, "Modern Theory of Polymer Solutions," Harper and Row, New York (1971)
- Flory PJ, "Statistical Mechanics of Chain Molecules," p. 30, John Wiley, New York (1969)
- Jeon SI, Jhon MS, J. Polym. Sci. A: Polym. Chem., 22, 3555 (1984)
- Rosen SL, "Fundamental Principles of Polymeric Materials," p. 81, John Wiley & Sons, New York (1982)
- Lath D, Bohdancecky M, J. Polym. Sci. C: Polym. Lett., 15, 555 (1977)
- Meyerhoff G, Shimotsuma S, Makromol. Chem., 135, 195 (1970)
- Wallach ML, Makromol. Chem., 103, 19 (1967)
- Tuzar Z, Volsicky V, Bohdanecky M, Makromol. Chem., 180, 1399 (1979)
- Aharoni SM, Makromol. Chem., 179, 1867 (1978)
- Kamide K, Miyazaki Y, Kobayashi H, Polym. J., 9, 317 (1977)
- Krigbaum WR, J. Polym. Sci., 38, 213 (1958)
- Van Krevelen DW, "Properties of Polymer," p. 259, Elsevier, New York (1990)