Inorganic Chemistry, Vol.55, No.21, 11479-11489, 2016
Local and Cooperative Jahn-Teller Effect and Resultant Magnetic Properties of M2AgF4 (M = Na-Cs) Phases
The crystal structure, magnetic properties, heat capacity, and Raman spectra of double-perovskite M2AgF4 (M = K, K3/4Rb1/4, K1/2Rb1/2, K1/4Rb3/4, and Rb) phases have been examined, adding to the body of previous results for the M = Na, Cs derivatives. The results suggest that double-perovskite K2AgF4 adopts a disordered orthorhombic Bmab structure with an antiferrodistortive arrangement of the elongated and tilted [AgF6] octahedra rather than the structure with the ferrodistortive arrangement of compressed octahedra, as suggested previously (Mazej, Z.; Goreshnik, Jaglicic, Z.; Gawel, B.; Lasocha, W.; Grzybowska, D.; Jaron, T.; Kurzydlowski, D.; Malinowski, P. J.; Kozminski, W.; Szydlowska, J.; Leszczynski, P. J.; Grochala, W. KAgF3, K2AgF4 and K3Ag2F7: important steps towards a layered antiferromagnetic fluoroargentate(II). CrystEngComm 2009, 11, 1702-1710). A re-examination of the previously collected single-crystal X-ray diffraction data confirms the current structure assignment, and it is also in agreement with recent theoretical calculations. High field electron paramagnetic resonance spectra reaffirm the presence of elongated [AgF6] octahedra in the crystal structure of all M2AgF4 phases studied. The local structure of the M = K derivative is most complex, with regions of the sample that are quite orthorhombically distorted, whereas other regions more closely resemble the tetragonal phase. The mixed-cation K/Rb phases are also inhomogeneous, containing regions of the pure K compound and regions of another high-symmetry phase (likely tetragonal) of a mixed (Rb-richer) compound with unknown composition. The temperature-resolved phase diagram of all K/Rb phases has been established and positioned within the entire M = Na, K, Rb, Cs series.