Inorganic Chemistry, Vol.55, No.21, 11490-11496, 2016
Hydrothermal Synthesis and Magnetic Characterization of the Quaternary Oxide CoMo2Sb2O10
The new quaternary layered oxide CoMo2Sb2O10 was synthesized by hydrothermal synthesis techniques, and its structure was determined from single-crystal X-ray diffraction data. CoMo2Sb2O10 crystallizes in the monoclinic space group C2/c with one Sb3+, Mo6+, and Co2+ atom site per unit cell, respectively. The crystal structure contains building units consisting of [Co2O8](n), [Mo2O8](n), and [SbO2](n) chains. These are connected through corner sharing to form charge neutral [CoMo2Sb2O10](n) layers. Thermal decomposition of CoMo2Sb2O10 starts at 550 degrees C. The magnetic susceptibility follows a Curie Weiss law above 50 K with a Curie constant of C = 3.46 emu K mol(-1) corresponding to an effective moment of mu(eff) = 5.26 mu(B) per cobalt atom and a Curie-Weiss temperature theta = -13.2 K. Short-range anti-ferromagnetic ordering dominates below 5 K. Magnetic susceptibility and heat capacity data can be successfully modeled by the predictions from an Ising linear chain with an intrachain spin exchange of ca. -7.8 K.