화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.45, 105-110, January, 2017
Synthesis of mesoporous reduced graphene oxide by Zn particles for electrodes of supercapacitor in ionic liquid electrolyte
E-mail:
Mesoporous reduced graphene oxide (m-rGO) was synthesized by mixing Zn and graphene oxide in acidic conditions followed by ultrasonication and was investigated as a supercapacitor electrode in a 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI) electrolyte. m-rGO shows a specific capacitance of 104.3 F g-1 at 1 A g-1 and a decrease in capacitance of 3% after 5000 cycles. The high performance is attributed to the significant mesopores, facilitating mass transport of the electrolyte. Thus, we report the facile synthesis of m-rGO with enhanced capacitance and durability in an ionic liquid electrolyte that has great potential for electrochemical energy storage applications.
  1. Conway BE, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, first ed., Springer, New York, 1999.
  2. Yu Z, Tetard L, Zhai L, Thomas J, Energy Environ. Sci., 8, 702 (2015)
  3. Jung MS, Kim TH, Yoon YJ, Kang CG, Yu DM, Lee JY, Kim HJ, Hong YT, J. Membr. Sci., 459, 72 (2014)
  4. Kotz R, Carlen M, Electrochim. Acta, 45(15-16), 2483 (2000)
  5. Winter M, Brodd RJ, Chem. Rev., 104(10), 4245 (2004)
  6. Jeon H, Jeong B, Lee JK, Kim HS, Lee SH, Lee J, Electrochem. Solid State Lett., 13(3), A25 (2010)
  7. Ohno H, Electrochemical Aspects of Ionic Liquids, John Wiley and Sons, Inc., Hoboken, New Jersey, 2005, pp. 75.
  8. Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS, ACS Nano, 5, 436 (2011)
  9. Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Nano Lett., 10, 4863 (2010)
  10. Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zang J, Chem. Soc. Rev., 44, 7484 (2015)
  11. Eliad L, Salitra G, Soffer A, Aurbach D, J. Phys. Chem. B, 105(29), 6880 (2001)
  12. Eliad L, Salitra G, Soffer A, Aurbach D, J. Phys. Chem. B, 106(39), 10128 (2002)
  13. Sun Y, Wu Q, Shi G, Energy Environ. Sci., 4, 1113 (2011)
  14. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA, Chem. Mater., 19, 4396 (2007)
  15. Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM, ACS Nano, 3, 411 (2009)
  16. Zhu Y, Murali S, Stoller MD, Velamakanni A, Piner RD, Ruoff RS, Carbon, 48, 2118 (2010)
  17. Hassan HMA, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, El-Shall MS, Al-Resayes SI, El-Azhary AA, J. Mater. Chem., 19, 3832 (2009)
  18. Cote LJ, Cruz-Silva R, Huang JX, J. Am. Chem. Soc., 131(31), 11027 (2009)
  19. Zhang YL, Guo L, Wei S, He YY, Xia H, Chen QD, Sun HB, Xiao FS, Nano Today, 5(1), 15 (2010)
  20. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS, Carbon, 45, 1558 (2007)
  21. Kotov NA, Dekany I, Fendler JH, Adv. Mater., 8(8), 637 (1996)
  22. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS, J. Mater. Chem., 16, 155 (2006)
  23. Kamat PV, Bedja I, Hotchandani S, J. Phys. Chem., 98(37), 9137 (1994)
  24. Kamat PV, Chem. Rev., 93, 267 (1993)
  25. Williams G, Seger B, Kamat PV, ACS Nano, 2, 1487 (2008)
  26. Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S, Chem.-Eur. J., 15, 6116 (2009)
  27. Wang Z, Zhou X, Zhang J, Boey F, Zhang H, J. Phys. Chem. C, 113, 14071 (2009)
  28. An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An J, Ruoff RS, J. Phys. Chem. Lett., 1, 1259 (2010)
  29. Ramesha GK, Sampath S, J. Phys. Chem. C, 113, 7985 (2009)
  30. Zhou Y, Bao Q, Tang LAL, Zhong Y, Loh KP, Chem. Mater., 21, 2950 (2009)
  31. Wang HL, Robinson JT, Li XL, Dai HJ, J. Am. Chem. Soc., 131(29), 9910 (2009)
  32. Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB, ACS Nano, 4, 3845 (2010)
  33. Periasamy M, Thirumalaikumar M, J. Organomet. Chem., 609, 137 (2000)
  34. Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH, Adv. Funct. Mater., 19(12), 1987 (2009)
  35. Gao W, Alemany LB, Ci L, Ajayan PM, Nat. Chem., 1, 403 (2009)
  36. Pei S, Zhao J, Du J, Ren W, Cheng HM, Carbon, 48, 4466 (2010)
  37. Moon IK, Lee J, Ruoff RS, Lee H, Nat Commun., 1, 73 (2010)
  38. Fan ZJ, Kai W, Yan J, Wei T, Zhi LJ, Feng J, Ren Y, Song LP, Wei F, ACS Nano, 5, 191 (2011)
  39. Mei X, Ouyang J, Carbon, 49, 5389 (2011)
  40. Liu Y, Li Y, Zhong M, Yang Y, Wen Y, Wang M, J. Mater. Chem., 21, 15449 (2011)
  41. Dey RS, Hajra S, Sahu RK, Raj CR, Panigrahi MK, Chem. Commun., 48, 1787 (2012)
  42. Pham VH, Pham HD, Dang TT, Hur SH, Kim EJ, Kong BS, Kim S, Chung JS, J. Mater. Chem., 22, 10530 (2012)
  43. Mei X, Zheng H, Ouyang J, J. Mater. Chem., 22, 9109 (2012)
  44. Yang S, Yue W, Huang D, Chen C, Lin H, Yang X, RSC Adv., 2, 8827 (2012)
  45. Domingues SH, Kholmanov IN, Kim T, Kim J, Tan C, Chou H, Alieva ZA, Piner R, Zarbin AJG, Ruoff RS, Carbon, 63, 454 (2013)
  46. Sarkar S, Basak D, Chem. Phys. Lett., 561-562, 125 (2013)
  47. Liu P, Huang Y, Wang L, Mater. Lett., 91, 125 (2013)
  48. Wu T, Gao J, Xu X, Wang W, Gao C, Qiu H, Nanotechnology, 24, 215604 (2013)
  49. Maiti UN, Lim J, Lee KE, Lee WJ, Kim SO, Adv. Mater., 26(4), 615 (2014)
  50. Yang J, Zhang E, Li X, Yu Y, Qu J, Yu ZZ, ACS Appl. Mater. Interfaces, 8, 2297 (2016)
  51. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S, Nature, 446, 60 (2007)
  52. Lozano-Castello D, Cazorla-Amoros D, Linares-Solano A, Shiraishi S, Kurihara H, Oya A, Carbon, 41, 1765 (2003)
  53. Song Y, Yang J, Wang K, Haller S, Wang Y, Wang C, Xia Y, Carbon, 96, 955 (2016)
  54. Frackowiak E, Phys. Chem. Chem. Phys., 9, 1774 (2007)
  55. Hsieh W, Horng TLA, Huang HC, Teng H, J. Mater. Chem. A, 3, 16535 (2015)
  56. Lim CS, Chua CK, Pumera M, Analyst, 139, 1072 (2014)
  57. Vivekchand SRC, Rout CS, Subrahmanyam KS, Govindaraj A, Rao CNR, J. Chem. Sci., 120, 9 (2008)