화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.1, 29-34, February, 2017
순환유동층보일러의 과열기 튜브 부식에 알칼리 금속과 염소가 미치는 영향
Effects of Alkali Metals and Chlorine on Corrosion of Super Heater Tube in Biomass Circulating Fluidized Bed Boiler
E-mail:,
초록
본 연구에서는 순환유동층 보일러 과열기 튜브의 부식 원인물질을 규명하여, 부식방지를 위한 방안을 모색하고자 하였다. 연료, 과열기 튜브 부식부위, 과열기 튜브에 부착된 재 및 보일러 재를 채취하여 성분분석을 수행하였다. 과열기 튜브 부식부위에서 산화로 인한 O성분이 함유되어 있는 것을 확인하였다. 과열기 튜브 부착 재 및 보일러 재에서 6.1% 및 4.3%의 Cl이 분석되었으며, 이는 설계값의 약 14-20배 정도 높은 수치이다. 또한 알칼리 금속물질(K, Na, Ca)의 함량이 매우 높게 분석되었다. XRF 데이터를 이용하여 보일러에서 재의 슬래깅과 파울링에 대한 영향을 예측하였다. Basicity는 과열기 튜브 부착 재 및 보일러 재에서 각각 3.62 및 2.72로 산정되었으며, 설계값인 0.35에 비하여 높은 수치를 갖는 것으로 확인되었다.
This study provides the identification of corrosion cause substances in super heater tube from a commercial scale circulating fluidized bed boiler. Electricity is produced by the combustion of biomass mainly wood waste. The biomass, super heater tube, super heater tube ash, and boiler ash were collected and components associated with corrosion were analyzed. A large amount of oxygen-containing material was found due to oxidation. The chlorine content was analyzed as 6.1% and 4.3% in super heater tube ash and boiler ash respectively which were approximately 20 and 14 times higher than those of designed values. Also, alkaline metal contents (K, Na, Ca) were very high in ash samples collected from super heater tube and boiler. The tendency of slagging and fouling was predicted based on X-Ray Fluorescence (XRF) results. Basicity that can lead to slagging was estimated as 3.62 and 2.72 in super heater tube and boiler ash, respectively. Slagging would occur with ash content when considering the designed value as 0.35.
  1. Song YJ, Trends and Implications of Energy Transition Policy in Germany, KERI Brief 16-04, Korea Economic Research Institute (2016).
  2. Jeong NY, Kim LH, J. Energy Eng., 20(3), 231 (2011)
  3. Lee JH, Kim JK, Yim ES, Chung CS, Rheem HJ, K. Korean Oil Chem. Soc., 29(4), 638 (2012)
  4. Lee JW, Park CH, News Inf. Chem. Eng., 29(4), 493 (2011)
  5. Lee MG, Daewoo Eng. Technol. Rep., 24(1), 53 (2008)
  6. Korea Energy Agency, Renewable Energy Status Report:Renewable Energy Policy Network for the 21st Century (2015).
  7. Fukuda Y, Kumon M, Application of high velocity flame spraying for the heat exchange tubes in coal fired boilers, Proceed.Int. Thermal Spray Confer. Kobe, Japan (1995).
  8. Liu W, Eng. Fail. Anal., 31, 101 (2013)
  9. Wang BQ, Wear, 188, 40 (1995)
  10. Xie JY, Walsh PM, Wear, 186, 256 (1995)
  11. Denny AJ, Principles and Prevention of Corrosion 2nd edition, 351-352, Macmillan, NY, USA (1992).
  12. Das SK, Hegde S, Dey PK, Mehrotra SP, Erosion-oxidation response of boiler grade steels: A mathematical investigation, Res. Lett. Mater. Sci., Article ID 542161 (2008).
  13. Zhang L, Sazonov V, Kenta J, Dixon T, Novozhilov V, Wear, 250, 762 (2001)
  14. Hantap Professional Engineers, Prevention of Metal Corrosion (2006).
  15. Li YS, Pasten S, Spiegel M, Mater. Sci. Forum, 461, 1047 (2004)
  16. Pettersson J, Asteman H, Svensson JE, Johansson LG, KCL-induced corrosion of a 304-type austenitic stainless steel at 600 °C - the role of potassium, oxidation of metals, 64, 26-41(2005).
  17. Lee DB, J. Korean Inst. Surf. Eng., 49(1), 14 (2016)
  18. Reese E, Grabke HJ, Mater. Corros., 43, 547 (1992)
  19. Reese E, Grabke HJ, Mater. Corros., 44, 41 (1993)
  20. Folkesson N, Johansson LG, Svensson JE, J. Electrochem. Soc., 154(9), 515 (2007)
  21. Seri O, Corrosion Sci., 36(10), 1789 (1994)
  22. Ericsson R, Mater. Corrs., 29, 400 (1978)
  23. Huijbregts W, Leferink R, Anti-Corros. Methods Mater., 51, 173 (2004)
  24. Cox WM, Huijbregts W, Leferink R, ASM Handb., 13C, 491 (2006)
  25. Levy AV, Corrosion Sci., 35, 1035 (1993)
  26. Krause HH, J. Mater. Energy Syst., 7(4), 322 (1986)
  27. Miller PD, Krause HH, Corrosion of carbon and stainless steels in flue gases from municipal incinerators, Proceedings of The American Society of Mechanical Engineers (ASME) National Incinerator Conference, ASME, New York, 300-309 (1972).
  28. Brown LC, Funk JF, Showalter SK, High efficiency generation of hydrogen fuels using nuclear power, Annual Report to the U.S. Department of Energy, Nuclear Energy Research Initiative (NERI) GA-A23451 (2000).
  29. Obernberger I, Biedermann F, Fractionate heavy metal separation in biomass combustion plants as a primary measure for a sustainable ash utilization, heavy metal fractionation in biomass combustion plants, Proceeding of Developments in Thermochemical Biomass Conversion, Canada, 1368-1383 (1996).
  30. Riedl R, Dahl J, Obernberger O, Narodoslawsky M, Corrosion in fire tube boilers of biomass combustion plants, Proceedings of the China Internatioanl Corrosion Control Conference, China Chemical Anticorrosion Technology Association (1999).
  31. Chandrasekaran SR, Hopke PK, Rector L, Allen G, Lin L, Energy Fuels, 26(8), 4932 (2012)
  32. Srivastava SC, Godiwalla KM, Banerjee MK, J. Mater. Sci., 32(4), 835 (1997)
  33. Choi BC, Kim HT, Chun WG, J. Energy Eng., 8(3), 445 (1999)
  34. Harb JN, Munson CL, Richards GH, Energy Fuels, 7, 208 (1993)