화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.28, No.1, 23-28, February, 2017
폐플라스틱 필름의 열분해특성에 대한 연구
Research on Pyrolysis Properties of Waste Plastic Films
E-mail:
초록
열중량 분석기와 파이롤라이저-가스크로마토그래피/질량분석기를 이용하여 폐플라스틱 필름의 열분해 특성연구를 수행하였다. 열중량 분석 결과, 최근 사용량이 증가된 녹말 첨가 바이오 플라스틱의 영향으로 폐플라스틱 필름의 열분해는 200 °C에서 370°C 사이의 녹말 분해구간과 370 °C에서 510 °C 사이의 PS, PP, PE와 같은 플라스틱계열의 고분자 분해구간을 가지는 것을 확인할 수 있었다. Revised Ozawa method를 이용한 동역학 분석 결과 폐플라스틱 필름의 열분해 반응 활성화 에너지는 녹말과 플라스틱계열 고분자의 다른 분해 반응에 의해 급격하게 변화되었다. 파이롤라이저-가스크로마토그래피/질량분석 결과 폐플라스틱 필름에 포함된 각 고분자의 열분해 부산물인 levoglucosan (녹말), terephthalic acid (PET), styrene monomer/dimer/trimer (PS), methylated alkenes (PP), alkadiene/alkene/alkane으로 구성된 triplet 피크 (PE)가 나타남을 확인할 수 있었다. 또한 고분자 첨가제로 사용되는 프탈레이트 성분도 검출되었다.
Pyrolysis characteristics of waste plastic films were investigated by using a thermogravimetric analysis and pyrolyzer-gas chromatography/mass spectrometry. Thermogravimetric analysis results revealed that the pyrolysis of waste plastic films can be divided into two distinct reactions; (1) the decomposition reaction of starch at between 200 and 370 °C and (2) that of other plastic polymers such as PS, PP, PE at between 370 and 510 °C. The kinetic analysis results obtained by using the revised Ozawa method indicated that the apparent activation energy of the pyrolysis reaction of waste plastic films was also changed dramatically according to the different decomposition reactions of two major waste plastic film components. Py-GC/MS results also revealed that the typical pyrolyzates of each polymer in waste plastic films were levoglucosan (starch), terephthalic acid (PET), styrene monomer, dimer, and trimer (PS), methylated alkenes (PP), and triplet peaks (PE) composed of alkadiene/alkene/alkane. The phthalate, used as a polymer additive, was also detected on the pyrogram of waste plastic films mixture.
  1. Korea Environment Corporation, Waste Generation and Treatment (2014).
  2. Shim SH, Kim WH, Keel SI, Yun JH, Jeong SH, J. Environ. Therm. Eng., 2, 55 (2005)
  3. Hwang IH, Kim SD, Kim TD, Lee DH, J. Korea Soc. Waste Manag., 20, 354 (2003)
  4. Kim HT, Lee HS, Cho YS, Park CH, J. Korean Soc. Environ. Eng., 2001, 11 (2001)
  5. Hwang TS, Kim YS, J. Korea Soc. Waste Manag., 20, 222 (2003)
  6. Predel M, Kaminsky W, Polym. Degrad. Stabil., 70, 373 (2000)
  7. You YS, Oh YS, Kim US, Choi SW, Clean Technol., 21(1), 1 (2015)
  8. ASTM E872-82, Standard Test Method for Volatile Matter in the Analysis of Particulate Wood Fuels (2006).
  9. ASTM D1102-84, Standard Test Method for Ash in the Wood (2013).
  10. Kim SD, Park JK, Thermochim. Acta, 264, 137 (1995)
  11. Lee J, Pai C, Appl. Chem. Eng., 27(3), 245 (2016)
  12. Miskolczi N, Angyal A, Bartha L, Valkai I, Fuel Process. Technol., 90(7-8), 1032 (2009)
  13. Vega D, Villar MA, Failla MD, Valles EM, Polym. Bull., 37(2), 229 (1996)
  14. Wong HW, Broadbel LJ, Ind. Eng. Chem. Res., 40(22), 4716 (2001)
  15. Kim BS, Kim YM, Lee HW, Jae J, Kim DH, Jung SC, Watanabe C, Park YK, ACS Sustain. Chem. Eng., 4, 1354 (2016)
  16. Liu X, Yu L, Xie F, Li M, Chen L, Li X, Starch, 62, 139 (2010)
  17. Riazzarelli P, Rapisarda M, Perna S, Mirabella EF, Carta SL, Puglisi C, Valenti G, J. Anal. Appl. Pyrolysis, 17, 72 (2016)
  18. Tsuge S, Ohtani H, Watanabe C, Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates, Elsevier, Oxford, UK (2011).
  19. Triacca VJ, Gloor PE, Zhu S, Hrymak AN, Hamielec AE, Polym. Eng. Sci., 33, 445 (1993)
  20. Faravelli T, Pinciroli M, Pisano F, Bozzano G, Dente M, Ranzi E, J. Anal. Appl. Pyrolysis, 60, 103 (2001)
  21. Yang Z, Liu X, Yang Z, Zhuang G, Bai Z, Zhang H, Guo Y, J. Anal. Appl. Pyrolysis, 102, 102 (2013)