화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.34, No.4, 1208-1213, April, 2017
Effect of post-synthesis annealing on properties of SnS nanospheres and its solar cell performance
E-mail:
SnS nanospheres (NSPs) were synthesized, and the effects of thermal annealing on the structural, morphological, chemical compositional and optical properties were examined. As-synthesized SnS NPSs with a mean size of 3-4 nm underwent a solid state morphological transformation by high temperature annealing in a nitrogen environment. Upon annealing, the size of SnS NSP increased to 5-6 nm with enhanced crystallinity. Also, the photoluminescence (PL) of the nitrogen-annealed samples slightly decreased in intensity with accompanying red-shift in spectrum. The power conversion efficiency of the solar cells using a polymer and the SnS NSPs was ~0.71%. These results confirm that the SnS NSPs demonstrate a potential as an inorganic material to be used in organic-inorganic hybrid bulk heterojunction (BHJ) photovoltaic devices.
  1. Hong E, Choi T, Kim JH, Korean J. Chem. Eng., 32(3), 424 (2015)
  2. Peng H, Jiang L, Huang J, Li G, J. Nanopart. Res., 9, 1163 (2007)
  3. Truong NTN, Nguyen TPN, Park C, Inter. J. Photoenergy, ID 146582, 2013 (2013)
  4. Burton L, Wash A, J. Phys. Chem. C, 116, 24262 (2012)
  5. Reddy KTR, Reddy NK, Miles RW, Sol. Energy Mater. Sol. Cells, 90(18-19), 3041 (2006)
  6. Sugiyama M, Murata Y, Shimizu T, Ramya K, Venkataiah C, Sato T, Reddy KTR, Jpn. J. Appl. Phys., 50, 05FH03 (2011)
  7. Yue GH, Peng DL, Yan PX, Wang LS, Wang W, Luo XH, J. Alloy. Compd., 468, 254 (2009)
  8. Reddy KTR, Reddy P, Datta PK, Miles RW, Thin Solid Films, 403, 116 (2002)
  9. Reddy NK, Hahn YB, Devika YB, Sumana HR, Gunasekhar KR, J. Appl. Phys., 101, 093522 (2007)
  10. Pramanik P, Basu PK, Biswas S, Thin Solid Films, 150, 269 (1987)
  11. An CH, Tang KB, Liu XM, Li FQ, Zhou G, Qian YT, J. Cryst. Growth, 252(4), 575 (2003)
  12. Hong SY, Popovitz-Biro R, Prior Y, Tenne R, J. Am. Chem. Soc., 125(34), 10470 (2003)
  13. Liu J, Xue DF, Electrochim. Acta, 56(1), 243 (2010)
  14. Thangaraju B, Kaliannan P, J. Phys. D-Appl. Phys., 33, 1054 (2000)
  15. Ortiz A, Alonso JC, Garcia M, Toriz J, Semicond. Sci. Technol., 11, 243 (1996)
  16. Price LS, Parkin UP, Hardy AME, Clark RJH, Hibbert TG, Molloy KC, Chem. Mater., 11, 1792 (1999)
  17. Oda Y, Shen H, Zhao L, Li J, Iwamoto M, Lin H, Sci. Technol. Adv. Mater., 15, 035006 (2014)
  18. Sohila S, Rajalakshmi M, Chosh C, Arora AK, Muthamizhchelvan C, J. Alloy. Compd., 509, 5843 (2011)
  19. Sohila S, Rajalakshmi M, Muthamizhchelvan C, Kalavathi S, Ghosh C, Divakar R, Venkiteswaran CN, Muralidharan NG, Arora AK, Mohandas E, Mater. Lett., 65, 1148 (2011)
  20. Zeferino RS, Pal U, Melendrez R, Flores MB, Adv. Nano Res., 1, 193 (2013)
  21. Brus LE, J. Chem. Phys., 80, 4403 (1984)
  22. Alivisatos AP, J. Phys. Chem., 100(31), 13226 (1996)
  23. Varshni YP, Physica., 34, 149 (1967)
  24. Luo S, Fan J, Liu W, Zhang M, Song Z, Lin C, Wu X, Chu PK, Nanotechnology, 17, 1695 (2006)
  25. Price LS, Parkin IP, Field MN, Hardy AME, Clark RJH, Hibbert TG, Molloy KC, J. Mater. Chem., 10, 527 (2000)
  26. Zhao Y, Zhang Z, Dang H, Liu W, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 113, 175 (2004)
  27. Baranovskii SD, Wiemer M, Nenashev AV, Jansson F, Gebhard F, J. Phys. Chem. Lett., 3, 1214 (2012)
  28. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ, Science, 270(5243), 1789 (1995)
  29. Lokteva I, Radychev N, Witt F, Borchert H, Parisi J, Olesiak JK, J. Phys. Chem., 114, 12784 (2010)
  30. Shaw PE, Ruseckas A, Samuel IDW, Adv. Mater., 20(18), 3516 (2008)