화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.2, 141-155, April, 2017
제철 슬래그를 이용한 광물 탄산화 기술의 개발 현황과 연구 방향
Development Status and Research Direction in the Mineral Carbonation Technology Using Steel Slag
E-mail:
초록
이 논문에서는 CO2 활용 기술 관점에서 광물 탄산화 기술의 하나인 제철 슬래그를 이용한 침강성 탄산칼슘(Precipitated Calcium Carbonate, PCC) 제조 기술의 개발 현황을 고찰하였다. 광물 탄산화 기술의 원리, 특징, 전세계적 개발 현향을 살펴보았고, PCC 제조기술 및 시장동향도 파악하였다. 광물 탄산화는 안정적이고 친환경적인 기술로, 산업 부산물의 경제적 처리를 가능하게 한다. 일반적으로 슬래그중 Ca 용출 및 고액 분리 과정후 상등액과 CO2의 반응을 통해 탄산칼슘을 제조한다. 이 기술은 파일럿 단계까지 기술개발이 진행되었으며(알토대학교의 Slag2PCC), 상용화를 위해서는 경제성 증대가 필요할 것으로 판단된다. 개발을 위한 핵심 기술로는 슬래그로부터 Ca의 효과적 용출 및 불순물 제거, 탄산칼슘의 입도 및 입형 제어를 통한 고부가가치화, 잔사 슬래그의 활용방안 발굴, 연속공정 구현을 위한 반응 조건 최적화 등을 들 수 있다.
In the present paper, we investigated the development status of precipitated calcium carbonate (PCC) production using steel slag, which is one of mineral carbonation (MC) technologies, from the standpoint of CO2 utilization. Principle, feature, and global and domestic development status of the mineral carbonation technology were discussed together with the overview of the production method and market of PCC. Mineral carbonation is known as stable and environmentally-friendly technology enabling economical treatment of industrials wastes. Typically, PCC is produced by the reaction of CO2 with supernatant solution after Ca extraction from steel slag followed by the separation of solid and liquid. The development status of MC using steel slag is at the pilot stage (Slag2PCC at Aalto University), and there remains the process economics improvement for commercialization. Key technologies for the further development are efficient extraction of Ca ions from steel slag including impurities removal, valorization of PCC via shape and size control, usage development and value-addition of residual slag, and optimization of reaction conditions for continuous process setup, etc.
  1. http://www.amenews.kr/atc/n.view.asp?ik=10058.
  2. Lee YJ, Climate Change and Green Growth, 10, 15 (2015)
  3. Lee JH, Lee DW, Gyu JS, Kwak NS, Lee IY, Jang KR, Choi JS, Shim JG, Korean Chem. Eng. Res., 53(5), 590 (2015)
  4. Sanna A, Uibu M, Caramanna G, Kuusik R, Maroto-Valer M, Chem. Soc. Rev., 43, 8049 (2014)
  5. Lackner KS, Science, 300 (2003)
  6. Inagendo, Carbon Capture Use & Storage(CCUS)(2013), http://www.inagendo.com/res/default/inagendo_ccus.pdf.
  7. DNV (Det Norske Veritas), Carbon Dioxide Utilization: Electro chemical Conversion of CO2 -Opportunities and Challenges, Position Paper 07-2011(2011).
  8. Arakawa H, Aresta M, Armor JN, Barteau MA, Beckman EJ, Bell AT, Bercaw E, Creutz C, Dinjus E, Dixon DA, Domen K, DuBois DL, Eckert J, Fujita E, Gibson DH, Goddard WA, Goodman DW, Keller J, Kubas GJ, Kung HH, Lyons JE, Manzer LE, Marks TJ, Morokuma K, Nich, Chem. Rev., 101(4), 953 (2001)
  9. KIMS (Korea Institute of Materials Science), “Chemical Conversion Technology of Carbon Dioixde,” MateriALL, 2013, 483-506(2013).
  10. Kim KH, KISTI Market Report, 2(12) (2012)
  11. Gronund & Precipitated Calcium Carbonate: Global Industry Markets & Outlook 2012, http://vmpc.com.vn.
  12. Quadrelli EA, Centi G, Duplan JL, Perathoner S, ChemSusChem., 4, 1194 (2011)
  13. http://www.businesswire.com/news/home/20160128005866/en/Global-Polyolefins-PO-Market-Drivers-Challenges-Trends.
  14. http://www.prnewswire.com/news-releases/global-acetic-acid-market---segmented-by-application-and-geography---trends-and-forecasts-2015-2020---reportlinker-review-300145381.html.
  15. Kim HS, Chae SC, Ahn JW, Jang YN, Mineral Science and Industry, 22(1), 71 (2009)
  16. Kim KH, KISTI Market Report, 4(1) (2014)
  17. Olajire AA, J. Petrol. Sci. Eng., 109, 364 (2013)
  18. Intergovernmental Panel on Climate Change, Carbon Dioxide Capture and Storage, IPCC Special Report, Cambridge University Press(2005).
  19. Han K, Rhee CH, Chun HD, Korean Chem. Eng. Res., 49(2), 137 (2011)
  20. Perry RH, Green D, Perry’s Chemical Engineers’ handbook, 6th Ed., McGraw-Hill(1984).
  21. GCCSI, Accelerating the Uptake of CCS: Industrial Use of Captured Carbon Dioxide(2011).
  22. Lee JH, Lee DW, Shim JG, KIC News, 18(3), 28 (2015)
  23. http://skyonic.com/technologies/skymine.
  24. http://www.calera.com.
  25. http://www.twence.com.
  26. http://www.solvay.com.
  27. Mattila HP, “Utilization of Steelmaking Waste Materials for Production of Calcium Carbonate(CaCO3),” Department of Chemical Engineering, Doctor of Technology Thesis, Abo Akademi University, Turku(2014).
  28. Lee JH, Lee DW, Gyu JS, Kwak NS, Lee IY, Jang KR, Choi JS, Shim JG, Korean Chem. Eng. Res., 52(3), 347 (2014)
  29. Kim DW, Monthly Electrical Journal, 461, 26 (2015)
  30. http://www.dwconst.re.kr/skill/skill02_6.asp.
  31. http://www/kcrc.re.kr.
  32. Park HS, “Formation Behavior of Precipitated Calcium Carbonate Polymorphs Follwing Nucleation Rate,” Department of Resource Engineering, M.S. Thesis, Inha University, Incheon(2005).
  33. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 276, 514 (2005)
  34. IHS Markit, Chemical Economics Handbook: Calcium Carbonate, Find-Ground and Precipitated(2014), https://www.ihs.com/products/fine-ground-and-precipitated-chemical-economics-handbook.html.
  35. Roskill Information Services, “Ground & Precipitated Calcium Carbonate: Global Industry Markets & Outlook,” 1st Ed., (2012).
  36. Stratton P, “An Overview of the North American Calcium Carbonate Market,” Oct. 2012, https://roskill.com/wp/wp-content/uploads/2014/11/download-roskills-paper-on-the-north-americancalcium-carbonate-market.attachment1.pdf.
  37. Mattila HP, Hudd H, Zevenhoven R, J. Clean Prod., 84, 611 (2014)
  38. Kirboga S, Oner M, Chem. Eng. Trans., 32, 2119 (2013)
  39. Han YS, Hadiko G, Fuji M, Takahashi M, J. European Ceram. Soc., 26, 843 (2006)
  40. Hadiko G, Han YS, Fuji M, Takahashi M, Mater. Lett., 59, 2519 (2005)
  41. Han YS, Hadiko G, Fuji M, Takahashi M, J. Cryst. Growth, 289(1), 269 (2006)
  42. Matsushita I, Hamada Y, Moriga T, Ashida T, Nakabayashi I, J. Ceram. Soc. Jpn., 104(11), 1081 (1996)
  43. Domingo C, Garcia-Carmona J, Loste E, Fanovich A, Fraile J, Gomez-Morales J, J. Cryst. Growth, 271(1-2), 268 (2004)
  44. Lee TJ, Seo JH, Kim HJ, TAPPI J., 43(3) (2011)
  45. Bang JH, Jang YN, Kim W, Song KS, Jeon CW, Chae SC, Lee SW, Park SJ, Lee MG, Chem. Eng. J., 174(1), 413 (2011)
  46. Bang JH, Jang YN, Kim W, Song KS, Jeon CW, Chae CS, Lee SW, Park SJ, Lee MG, Chem. Eng. J., 198-199, 254 (2012)
  47. Cho BS, Lee HH, Kim GY, Megazine of RCR, 7(3), 9 (2012)
  48. Choi JS, Architecture, 56(08), 18 (2012)
  49. Jeon JG, Jin SJ, Kim DH, Megazine of RCR, 8(1), 8 (2013)
  50. Rawlins CH, “Geological Sequestration of Carbon Dioxide by Hydrous Carbonate Formation in Steelmaking Slag,” Department of Metallurgical Engineering, Ph.D. Dissertation, Missouri University of Science and Technology, Rolla(2008).
  51. Kim D, Kim MJ, J. Korea Soc. Waste Mgmt., 32(4), 317 (2015)
  52. Chiang YW, Santos RM, Elsen J, Meesschaert B, Martens JA, Van Gerven T, Chem. Eng. J., 249, 260 (2014)
  53. Eloneva S, Teir S, Salminen J, Fogelholm CJ, Zevenhoven R, Energy, 33(9), 1461 (2008)
  54. Said A, Mattila HP, Jarvinen M, Zevenhoven R, Appl. Energy, 112, 765 (2013)
  55. Kunzler C, Alves N, Pereira E, Nienczewski J, Ligabue R, Einloft S, Dullius J, Energy Procedia, 4, 1010 (2011)
  56. Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K, Energy, 33, 778 (2008)
  57. Sun Y, Yao MS, Zhang JP, Yang G, Chem. Eng. J., 173(2), 437 (2011)
  58. Mun MW, Cho MH, Energy Procedia, 37, 6999 (2013)
  59. Kwack JS, “Study on the CO2 Gas Fixation Using the Construction Byproducts through the Chemical Pre-treatment and Wet Mineral Carbonation,” Department of Architecture Engineering, M.S. Thesis, Hanyang University, Ansan(2013).
  60. Song HY, Seo JB, Kang SK, Kim ID, Choi BW, Oh KJ, Clean Technol., 20(1), 42 (2014)
  61. Baek SH, Park JH, Heo DM, K. R. Patent 1009585930000 (2010).
  62. Mattila HP, Grigaliunaite I, Zevenhoven R, Chem. Eng. J., 192, 77 (2012)
  63. Said A, Laukkanen T, Jarvinen M, Appl. Energy, 177, 602 (2016)
  64. Chung SY, Lee KC, Cho MH, Sohn SG, Park DC, K. R. Patent 1012512640000(2013).
  65. Santos RM, Francois D, Mertens G, Elsen J, Van Gerven T, Appl. Therm. Eng., 57(1), 154 (2013)
  66. Huijgen WJJ, Comans RNJ, Witkamp GJ, Energy Conv. Manag., 48(7), 1923 (2007)
  67. Eloneva S, “Reduction of CO2 Emissions by Mineral Carbonation: Steelmaking Slags as a Raw Material with a Pure Calcium Carbonate End Product,” Ph.D. Dissertation, Department of Energy Technology, Aalto University, Espoo(2010).
  68. Eloneva S, Said A, Fogelholm CJ, Zevenhoven R, Appl. Energy, 90(1), 329 (2012)
  69. Lee S, Kim JW, Chae S, Bang JH, Lee SW, J. CO2 Util., 16, 336 (2016)
  70. Giannoulakis S, Volkart K, Bauer C, Int. J. Greenhouse Gas Control, 21, 140 (2014)
  71. Teir S, Kotiranta T, Pakarinen J, Mattila HP, J. CO2 Util., 14, 37 (2016)
  72. Lekakh SN, Rawlins CH, Robertson DGC, Richards VL, Peaslee KD, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 39B, 125 (2008)
  73. Park S, Na J, Kim M, An J, Lee C, Han C, Korean Chem. Eng. Res., 54(5), 612 (2016)
  74. Kim S, Ko JW, Park CB, J. Mater. Chem., 21, 11070 (2011)
  75. Karakas F, Hassas BV, Celik MS, Prog. Org. Coat., 83, 64 (2015)
  76. https://en.wikipedia.org/wiki/Standard_enthalpy_of_formation.