Korean Chemical Engineering Research, Vol.55, No.2, 163-169, April, 2017
상용 고용량 리튬이온이차전지용 NCA 양극활물질의 전기화학적 특성
Electrochemical Properties of Commercial NCA Cathode Materials for High Capacity of Lithium Ion Battery
E-mail:,
초록
LiNi1-x-yCoxAlyO2(x=0.15, y=0.045 혹은 0.05, NCA) 양극소재의 전기화학적 특성 및 양극소재의 입자 크기 분포에 대한 리튬이온이차전지의 수명특성에 대한 영향을 살피기 위해 두 종의 상업용 NCA (NCA#1, NCA#2) 양극소재를 리튬이온이차전지의 양극으로 사용하였다. NCA#1은 약 5 μm의 균일한 구형의 입자로 구성되어 있고 NCA#2는 약 5 μm와 11 μm 정도의 입자들이 혼합되어 있는 분말이다. 충방전 측정 결과 NCA#2는 초기 방전용량은 197.0 mAh/g으로 NCA#1에 비해 높게 나타났다. NCA#1과 NCA#2의 용량 유지율(30사이클 기준)은 각각 92%와 94%로 나타났다.
In order to investigate the electrochemical properties and the particle size effect of LiNi1-x-yCoxAlyO2 (x=0.15, y=0.045 or 0.05, NCA) for lithium ion batteries (LIBs), two commercial NCA cathode materials (NCA#1, NCA#2) were used as cathode materials for LIB. The average particle size of the NCA#1 which consisted of uniform spherical particles was found to be approximately 5 μm. NCA#2 consisted of particles with bimodal size distribution of approximately 5 μm and 11 μm. From the results of charge-discharge performance test, a high initial discharge capacity of 197.0 mAh/g was obtained with NCA#2, which is a higher value than that with NCA#1. The cycle retentions of NCA#1 and NCA#2 up to 30 cycles were 92% and 94%, respectively.
- Kang KY, Choi MG, Lee YG, Kim KM, Korean Chem. Eng. Res., 49(5), 541 (2011)
- Lee HY, Lee JD, Korean Chem. Eng. Res., 54(6), 746 (2016)
- Wu BH, Wang J, Li JY, Lin WQ, Hu HN, Wang F, Zhao SY, Gan CL, Zhao JB, Electrochim. Acta, 209, 315 (2016)
- Vu DL, Lee JW, Korean J. Chem. Eng., 33(2), 514 (2016)
- Hua W, Zhang J, Zheng Z, Liu W, Peng X, Guo XD, Zhong B, Wang YJ, Wang X, J. Chem. Soc.-Dalton Trans., 43, 14824 (2014)
- Nitta N, Wu F, Lee JT, Yushin G, Mater. Today, 18, 252 (2015)
- Liu J, Wang S, Ding Z, Zhou R, Xia QJ, Chen L, Wei W, Wang P, ACS Appl. Mater. Interfaces, 8, 18008 (2016)
- Choo S, Kim HY, Yoon DY, Choi W, Oh SH, Ju JB, Ko JM, Jang H, Cho WI, Korean J. Chem. Eng., 31(5), 905 (2014)
- Conry TE, Mehta A, Cabana J, Doeff MM, Chem. Mater., 24, 3307 (2012)
- Lim SN, Ahn W, Yeon SH, Bin Park S, Electrochim. Acta, 136, 1 (2014)
- Lee DJ, Scrosati B, Sun YK, J. Power Sources, 196(18), 7742 (2011)
- Lee SH, Yoon CS, Amine K, Sun YK, J. Power Sources, 234, 201 (2013)
- Liu W, Hu G, Du K, Peng Z, Cao Y, Surf. Coat. Technol., 216, 267 (2013)
- Kang SH, Kim J, Stoll ME, Abraham D, Sun YK, Amine K, J. Power Sources, 112(1), 41 (2002)
- Santhanam R, Rambabu B, J. Power Sources, 195(13), 4313 (2010)
- Chang ZR, Chen ZJ, Wu F, Tang HW, Zhu ZH, Acta Phys. Chim. Sin., 24, 513 (2008)
- Chang ZR, Chen ZJ, Wu F, Yuan XZ, Wang HJ, Electrochim. Acta, 54(26), 6529 (2009)
- Dahn JR, Sacken UV, Michal CA, Solid State Ion., 44, 87 (1990)
- Reimers JN, Rossen E, Jones CD, Dahn JR, Solid State Ion., 61, 335 (1993)
- Wu KC, Wang F, Gao LL, Li MR, Xiao LL, Zhao LT, Hu SJ, Wang XJ, Xu ZL, Wu QG, Electrochim. Acta, 75, 393 (2012)
- Li W, Reimers JN, Dahn JR, Solid State Ion., 67(1-2), 123 (1993)
- Makimura Y, Sasaki T, Nanaka T, Nishimura YF, Uyama T, Okuda C, Itou Y, Takeuchi Y, J. Mater. Chem. A, 4, 8350 (2016)