Applied Chemistry for Engineering, Vol.28, No.2, 245-251, April, 2017
ZnO를 이용한 광 전기화학적 수소제조 반응 시 Ag 첨가 영향
Effect of Ag Addition on ZnO for Photo-electrochemical Hydrogen Production
E-mail:
초록
본 연구에서는 공침법을 이용해 ZnO를 합성하였고, 촉매의 성능을 개선하고자 Ag를 첨가하였다. 합성한 촉매의 물리화학적 특성은 X-선 회절분석(XRD), 자외선-가시선 분광광도계(UV-visible spectroscopy), 전자주사현미경(SEM), 에너지 분산형 분광분석법(EDS), 광 발광(photoluminescence), 광 전류 측정(photocurrent)을 이용해 확인하였다. 촉매는 물과 메탄올 분해로부터 수소 제조를 통해 성능을 평가하였다. 그 결과 전자 캡쳐 역할을 하는 Ag 첨가로 인해 들뜬 전자와 정공 사이의 재결합이 줄어들어 촉매의 성능이 향상되었으며, 특히 0.50 mol% Ag/ZnO 촉매를 사용하였을 때 10 h 반응 후 8.60 μmol g-1의 수소가 발생하였다.
In this study, ZnO, which is widely known as a non TiO2 photocatalyst, was synthesized using coprecipitation method and Ag was added in order to improve the catalytic performance. The physicochemical characteristics of the synthesized ZnO and Ag/ZnO particles were checked using X-ray diffraction (XRD), UV-visible spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), photoluminescence (PL), and photocurrent measurements. The performance of catalysts was tested by H2 production using the photolysis of H2O with MeOH. By adding Ag which plays a role as an electron capture on the ZnO catalyst, the performance increased due to the recombination of excited electrons and holes. In particular, 8.60 μmol g-1 H2 was produced after 10 h reaction over the 0.50 mol% Ag/ZnO.
- Messaoudani Zine Labidine, Rigas Fotis, Hamid Mahar Diana Binti, Hassan Che Rosmani Che, Int. J. Hydrog. Energy, 41(39), 17511 (2016)
- Lopez-Tenllado FJ, Hidalgo-Carrillo J, Montes V, Marinas A, Urbano FJ, Marinas JM, Ilieva L, Tabakova T, Reid F, Catal. Today, 280, 58 (2017)
- Ahmadi F, Haghighi M, Ajamein H, J. Mol. Catal. A-Chem., 421, 196 (2016)
- Kaftan A, Kusche M, Laurin M, Wasserscheid P, Libuda J, Appl. Catal. B: Environ., 201, 169 (2017)
- Huang X, Jia CC, Wang CZ, Xiao FK, Zhao N, Sun NN, Wei W, Sun YH, Catal. Today, 281, 241 (2017)
- Nikolaidis P, Poullikkas A, Renew. Sust. Energ. Rev., 67, 597 (2017)
- Aparna AR, Brahmajirao V, Karthikeyan TV, Procedia Mater. Sci., 6, 1650 (2014)
- Vaquero F., Navarro R. M., Fierro J. L. G., Int. J. Hydrog. Energy, 41(27), 11558 (2016)
- Wang XJ, Zhang SS, Xie YB, Wang HJ, Yu H, Shen YX, Li ZH, Zhang SQ, Peng F, Int. J. Hydrog. Energy, 41(44), 20192 (2016)
- Perez-Larios A, Lopez R, Hernandez-Gordillo A, Tzompantzi F, Gomez R, Torres-Guerra LM, Fuel, 100, 139 (2012)
- Yu K, Zhang CX, Chang Y, Feng YJ, Yang ZQ, Yang T, Lou LL, Liu SX, Appl. Catal. B: Environ., 200, 514 (2017)
- Xie MY, Su KY, Peng XY, Wu RJ, Chavali M, Chang WC, J. Taiwan Inst. Chem. Eng., 70, 161 (2017)
- Sampaio MJ, Oliveira JWL, Sombrio CIL, Baptista DL, Teixeira SR, Carabineiro SAC, Silva CG, Faria JL, Appl. Catal. A: Gen., 518, 198 (2016)
- Di TM, Zhu BC, Zhang J, Cheng B, Yu JG, Appl. Surf. Sci., 389, 775 (2016)
- Kuriakose S, Satpati B, Mohaptatra S, Phys. Chem. Chem. Phys., 16, 12741 (2014)
- Park MS, Kang M, Mater. Lett., 62, 183 (2008)
- Kuriakose S, Choudhary V, Satpati B, Mohapatra S, Beilstein J. Nanotechnol., 5, 639 (2014)
- Zheng Y, Chen C, Zhan Y, Lin X, Zheng Q, Wei K, Zhu J, J. Phys. Chem. C, 122, 10773 (2008)
- Chang CJ, Lee Z, Chu KW, Wei YH, J. Taiwan Inst. Chem. Eng., 66, 386 (2016)
- Zhang Y, Hu Y, Zeng H, Zhong L, Liu K, Cao H, Li W, Yan H, J. Hazard. Mater., 329, 22 (2017)
- Yang Q, Peng P, Xiang Z, Chem. Eng. Sci., 162, 33 (2017)
- Lee H, Park Y, Kang M, J. Ind. Eng. Chem., 19(4), 1162 (2013)
- Chouhan N, Ameta R, Meena RK, Mandawat N, Ghildiyal R, Int. J. Hydrog. Energy, 41(4), 2298 (2016)
- Mangrulkar PA, Chilkalwar AA, Kotkondawar AV, Manwar NR, Antony PS, Hippargi G, Labhsetwar N, Trachtenberg MC, Rayalu SS, J. CO2 Util., 17, 207 (2017)
- Daud SNHM, Haw C, Chiu W, Aspanut Z, Chia M, Khanis NH, Khiew P, Hamid MAA, Mater. Sci. Semicond. Process, 56, 228 (2016)
- Tumuluri A, Naidu KL, Raju KCJ, Int. J. Chem. Tech. Res., 6, 3353 (2014)
- Varughese G, Usha KT, Kumar AS, Int. J. Latest Res. Sci. Technol., 3, 133 (2014)