화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.55, No.3, 401-408, June, 2017
자가치유성을 갖는 고분자개질 방수아스팔트-몬모릴로나이트 composite 제조: 1. 3-aminopropyltriethoxysilane에 의한 몬모릴로나이트(K-10)의 실란화 특성 및 XRD 분석의 기준에 따른 최적화
Preparation of Self-repairing Polymer-modified Waterproofing Asphalt-montmorillonite Composite: 1. Silylation Characteristics of Montmorillonite (K-10) Using 3-aminopropyltriethoxysilane and its Optimal Condition According to a Criterion by XRD Analysis
E-mail:
초록
자가치유성을 갖는 고분자개질 빙수아스팔트-몬모릴로나이트(MMT) composite 제조를 위하여 양이온(Na+)교환 처 리된 K-10 (Na-MMT-K)에 대한 3-aminopropyltriethoxysilane (APS) 개질의 특성을 규명하고 적정개질조건을 XRD 분석을 통하여 제시하였다. APS 개질된 Na-MMT-K (S-Na-MMT-K)에 대한 XRD 분석결과로서, Na-MMT-K는 K-10과 자연유래 또는 Ca-MMT에서 개질된 Na-MMT의 피크 특성들을 동시에 가지는 것이 확인되었다. 또한 S-Na-MMT-K 도 동시에 두 개의 저면간격(d001) 특성들을 가짐이 관찰되었고, 그 중에서 부(001) 피크(2θ=3.9~4.2°)와 주(001)피크 (2θ=8.838° 근처)의 면적비(%)를 APS개질도에 대한 기준(criterion)으로 제시하였다. Na-MMT-K의 APS개질에 대한 반 응전 APS 적정용해시간, 적정반응시간, 적정 APS농도 및 적정반응온도는 각각 20 min, 2~3시간, 7.5 w/v% 및 50 °C 가 도출되었다.
In preparation of self-repairing polymer-modified waterproofing asphalt-montmorillonite (MMT) composite, silylation-modification characteristics of cation (Na+) exchanged K-10 (Na-MMT-K) using 3-aminopropyltriethoxysilane (APS) were studied and the optimal conditions of its silylation-modification process were proposed by use of the results of XRD analysis on silylation-modified Na-MMT-K (S-Na-MMT-K) under various conditions. According to XRD results, it was confirmed that peaks of Na-MMT-K were simultaneously consistent with those of K-10 and natural or Ca-MMT modified Na-MMT. Similarly, S-Na-MMT-K was observed to have two basal spacings (d001), among which the area-ratio of a secondary (001) peak (2θ=3.9~4.2°) to a primary (001) peak (2θ~8.838°) was suggested to be a criterion to represent a degree of APS silylation-modification. Then, the optimal conditions on APS-stirring period prior to APS-MMT reaction, APS-MMT reaction period, APS concentration and reaction temperature at the highest area-ratio were turned out to be 20 min, 2~3 hr, 7.5 w/v% and 50 °C, respectively.
  1. Alexandre M, Dubois P, Mater. Sci. Eng., 28, 1 (2000)
  2. Paul DR, Robeson LM, Polymer, 49(15), 3187 (2008)
  3. Pavlidou S, Papaspyrides C, Prog. Polym. Sci, 33, 1119 (2008)
  4. Ray SS, Okamoto M, Prog. Polym. Sci, 28, 1539 (2003)
  5. Bertuoli PT, Piazza D, Scienza LC, Zattera AJ, Appl. Clay Sci., 87, 46 (2014)
  6. Piscitelli F, Posocco P, Toth R, Fermeglia M, Pricl S, Mensitieri G, Lavorgna M, J. Colloid Interface Sci., 351(1), 108 (2010)
  7. Shanmugharaj AM, Rhee KY, Ryu SH, J. Colloid Interface Sci., 298(2), 854 (2006)
  8. Yi J, Kim SJ, J. Miner. Soc. Korea, 15, 273 (2002)
  9. Reshimi R, Sugunan S, J. Mol. Catal. B-Enzym., 97, 36 (2013)
  10. Husin NFDC, Harun FW, Jumal J, Othman SS, J. Ind. Eng. Res., 1(5), 8 (2015)
  11. Farias M, Martinelli M, Rolim GK, Appl. Catal. A: Gen., 403(1-2), 119 (2011)
  12. Su LN, Tao Q, He HP, Zhu JX, Yuan P, Mater. Chem. Phys., 136(2-3), 292 (2012)
  13. Yoo T, Cho C, Cho U, Lee JR, Kim S, Biomaterials, 15(2), 60 (2011)
  14. Fiayyaz M, Zia KM, Zuber M, Jamil T, Khosa MK, Jamal MA, Korean J. Chem. Eng., 31(4), 644 (2014)
  15. Zeng XX, Xu GH, Gao YA, An Y, J. Phys. Chem. B, 115(3), 450 (2011)
  16. Lee EJ, Lee JH, Lim KH, Korean Chem. Eng. Res., 55(3), 409 (2017)
  17. He HP, Duchet J, Galy J, Gerard JF, J. Colloid Interface Sci., 288(1), 171 (2005)
  18. Uddin F, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 39A, 2804 (2008)
  19. Zhang Y, Jiang T, Chen L, Li G, “Study on Sodium Modification of Inferior Ca-based Bentonite by Suspension Method,” ISRN Materials Science, Volume 2011, Article ID 953132, 6 pages doi:10.5402/2011/953132(2011).
  20. Shen W, He HP, Zhu JX, Yuan P, Frost RL, J. Colloid Interface Sci., 313(1), 268 (2007)