화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.5, 439-445, May, 2017
Preparation, Characterization and Properties of Poly(lactic acid)/ Poly(1,4-butylene adipate) Blends for Biodegradable Packaging Materials
E-mail:,
Poly(lactic acid) (PLA)/poly(1,4-butylene adipate) (PBA) blends with different PBA content were directly prepared via melt blending as potential biodegradable packaging materials. PBA with 1000 g/mol number average molecular weight was served as plasticizer to improve PLA properties. The morphological, thermal and mechanical properties of the blends were extensively investigated by scanning electron microscope (SEM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), tensile and impact tests and thermogravimetry (TG). The results show that the degree of crystallinity of PLA increased with increasing PBA content. The addition of PBA (20 wt%) result in the positive effect on the elongation at break and toughness, which increased from 7.9% to 74.4% and from 3.9 kJ/m2 to 12.6 kJ/ m2, respectively. Meanwhile, the migration tests indicate that PBA exhibits excellent lower migration ratio compared with citrate esters.
  1. Middleton JC, Tipton AJ, Biomaterials, 21, 2335 (2000)
  2. Shor L, Guceri S, Wen X, Gandhi M, Sun W, Biomaterials, 28, 5291 (2007)
  3. Deschamps A, Biomaterials, 24, 2643 (2003)
  4. Bao L, Luo X, Dangdang Z, Lei J, Cao Q, Wang J, J. Mater. Chem., 35, 5862 (2014)
  5. Ljungberg N, Wesslen B, Polymer, 44(25), 7679 (2003)
  6. Orue A, Jauregi A, Pena-Rodriguez C, Labidi J, Eceiza A, Arbelaiz A, Compos. Part B: Eng., 73, 132 (2015)
  7. Wu D, Zhang Y, Zhang M, Zhou W, Eur. Polym. J., 44, 2171 (2008)
  8. Zhang C, Wang L, Zhai T, Wang X, Dan Y, Turng L, J. Mech. Behav. Biomed. Mater., 53, 403 (2016)
  9. Kim NY, Yun YS, Lee JY, Choochottiros C, Pyo H, Chin IJ, Jin HJ, Macromol. Res., 19(9), 943 (2011)
  10. Hengsong S, Qi G, Xiaowei L, Yifan M, Jun H, Yuan Y, Changsheng L, RSC Adv., 97, 79703 (2015)
  11. Sarazin P, Li G, Orts WJ, Favis BD, Polymer, 49(2), 599 (2008)
  12. Xiong Z, Yang Y, Feng J, Zhang X, Zhang C, Tang Z, Zhu J, Carbohydr. Polym., 92, 810 (2013)
  13. Woei CB, Azowa IN, Wan YWMZ, Zobir HM, J. Appl. Polym. Sci., 6, 4576 (2013)
  14. Choi KM, Lim SW, Choi MC, Kim YM, Han DH, Ha CS, Polym. Bull., 71(12), 3305 (2014)
  15. Hu Y, Hu YS, Topolkaraev V, Hiltner A, Baer E, Polymer, 44(19), 5711 (2003)
  16. Shirai MA, Muller CMO, Grossmann MVE, Yamashita F, J. Polym. Environ., 23, 54 (2015)
  17. Liu HZ, Zhang JW, J. Polym. Sci. B: Polym. Phys., 49(15), 1051 (2011)
  18. Burgos N, Martino VP, Jimenez A, Polym. Degrad. Stabil., 98, 651 (2013)
  19. Martin O, Averous L, Polymer, 42(14), 6209 (2001)
  20. Ljungberg N, Wesslen B, J. Appl. Polym. Sci., 86(5), 1227 (2002)
  21. Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P, Eur. Polym. J., 45, 2839 (2009)
  22. Zhu Z, Xiong C, Zhang L, Yuan M, Deng X, Eur. Polym. J., 35, 1821 (1999)
  23. Shi D, Hua J, Zhang L, Chen M, Polymers-Basel, 7, 468 (2015)
  24. Maharana T, Pattanaik S, Routaray A, Nath N, Sutar AK, React. Funct. Polym., 93, 47 (2015)
  25. Massimo B, Giovanna F, Mariastella S, Michel R, David L, Kurt R, Erich W, J. Appl. Polym. Sci., 7, 1731 (2003)
  26. Piorkowska E, Kulinski Z, Galeski A, Masirek R, Polymer, 47(20), 7178 (2006)
  27. Di Lorenzo ML, Ovyn R, Malinconico M, Rubino P, Grohens Y, Polym. Eng. Sci., 55(12), 2698 (2015)
  28. Yokohara T, Yamaguchi M, Eur. Polym. J., 44, 677 (2008)
  29. Jiang L, Wolcott MP, Zhang JW, Biomacromolecules, 7(1), 199 (2006)
  30. Park JY, Hwang SY, Yoon WJ, Yoo ES, Im SS, Macromol. Res., 20(12), 1300 (2012)
  31. Arrieta MP, Castro-Lopez MDM, Rayon E, Barral-Losada LF, Lopez-Vilarino JM, Lopez J, Gonzalez-Rodriguez MV, J. Agr. Food Chem., 62, 10170 (2014)
  32. Lee SH, Kim SH, Han YK, Kim YH, J. Polym. Sci. A: Polym. Chem., 39(7), 973 (2001)