Applied Chemistry for Engineering, Vol.28, No.4, 442-447, August, 2017
반응표면분석법을 이용한 감잎과 엉겅퀴로부터 항산화성분의 추출공정 최적화
Optimization of Extraction Process for Antioxidant from Persimmon Leaf and Thistle Using Response Surface Methodology
E-mail:
초록
본 연구에서는 항산화성분을 다량 함유하고 있는 천연물로부터 유효성분을 추출하고, 이를 반응표면분석법을 이용하여 추출공정을 최적화하였다. 또한 감잎과 엉겅퀴로부터 추출된 유효성분의 플라보노이드 함량과 폴리페놀 함량을 측정함으로써 유효성분의 기능성을 평가하였다. 추출공정의 독립변수로는 추출시간, 추출온도, 용매의 비율을 설정하였고, 반응치는 수율, 폴리페놀 함량, 플라보노이드 함량을 확인하였다. 감잎의 경우 추출시간(3.1 h), 주정/초순수 부피비(63.4 vol%),추출온도(54.6 ℃)에서 수율(27.7%), 폴리페놀 함량(33.2 mg GAE/g), 플라보노이드 함량(47.8 mg QE/mg dw)의 최적 결과를 얻었으며, 엉겅퀴의 경우에는 추출시간(2.9 h), 주정/초순수 부피비(40.7 vol%), 추출온도(68.4 ℃)에서 수율(27.0%), 폴리페놀 함량(17.9 mg GAE/g), 플라보노이드 함량(28.8 mg QE/mg dw)으로 예측되었으며, 종합만족도는 71.7%이다.
In this study, we extracted an antioxidant from natural products which are known to have a high antioxidant content and also optimized the extraction process by applying a response surface methodology (RSM). In addition, by measuring the total flavonoids and total polyphenols of the active ingredient extracted persimmon leaf and thistle, the functionality of the active ingredient was evaluated. Both ultrapure water and alcohol were used as extraction solvents and the ratio of ultrapure and alcohol, amount of sample, extraction time, extraction temperature were set as independence variables. Also, the yield, total polyphenols, and flavonoids was set as the response. Optimal extraction conditions were as follows; for persimmon leaf, the extraction time = 3.1 h, ratio of alcohol/ultrapure = 63.4 vol%, and temperature = 54.6 ℃ while for thistle the extraction time = 2.9 h, ratio of alcohol/ultrapure = 40.7 vol%, and temperature = 68.4 ℃. Also, the response were as follows; for persimmon leaf, the yield = 27.7%, total polyphenols = 33.2 mg GAE/g, and total flavonoids = 47.8 mg QE/mg dw, whereas for thistle the yield = 27.0%, total polyphenols = 17.9 mg GAE/g, and total flavonoids = 28.8 mg QE/mg dw at the optimal conditions. The overall satisfaction level was 71.7%.
- Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH, Korean J. Food Sci. Technol., 44(5), 540 (2012)
- Van-Gaal L, Mertens I, De-Block C, Nature, 444, 875 (2006)
- Park SA, Ha JH, Park SN, Appl. Chem. Eng., 24(2), 177 (2013)
- Jeong HS, Lee JH, Appl. Chem. Eng., 25(4), 363 (2014)
- Clifford AH, Cuppett SL, J. Sci. Food Agric., 80, 1063 (2000)
- Belwal T, Dhyani P, Bhatt ID, Rawal RS, Pande V, Food Chem., 207, 115 (2016)
- Alberti A, Zelinski AAF, Zardo DM, Demiate IM, Nogueira A, Mafra LI, Food Chem., 149, 151 (2014)
- Ilaiyaraja N, Likhith KR, Babu GRS, Khanum F, Food Chem., 173, 348 (2015)
- D’Archivio AA, Maggi MA, Food Chem., 219, 414 (2017)
- Parco MS, Wang Y, Stephen EA, Life Sci., 84(13-14), 468 (2009)
- Clifford AH, Cuppett SL, J. Sci. Food Agric., 80, 1063 (2000)
- Cook NC, Samman S, J. Nutr. Biochem., 7, 66 (1996)
- Beck S, Stengel J, Phytochemistry, 130, 201 (2016)
- Yanga RF, Genga LL, Lub HQ, Fanc XD, Ultrasound-synergized electrostatic field extraction of total flavonoids from Hemerocallis citrina baroni, Ultrason. Sonochem., 34, 571-579 (2017).
- Hong IK, Park BR, Jeon GS, Lee SB, Appl. Chem. Eng., 27(3), 276 (2016)