화학공학소재연구정보센터
Clean Technology, Vol.23, No.3, 294-301, September, 2017
과산화수소 광분해를 이용한 선박 배가스 내 NO 산화흡수에 관한 연구
Oxidation and Removal of NO Emission from Ship Using Hydrogen Peroxide Photolysis
E-mail:
초록
선박 배가스 오염물질에 대한 규제가 강화됨에 따라 한정적인 공간 내에 복합 오염물질을 제어하기 위한 기술로써 습식흡수법은 다양한 오염물질을 동시에 제거할 수 있는 장점을 가지고 있으나 일산화질소의 낮은 용해도로 인한 한계점을 가지고 있다. 따라서 본 연구에서는 일산화질소를 이산화질소로 산화시켜 용해도를 높임으로써 흡수효율을 증대시키는 방안으로 자외선-과산화수소 산화법을 적용하였다. 자외선을 투사하여 생성되는 수산화라디칼의 양자수율과 과산화수소의 광분해속도는 8 W, 2 M의 최적조건에서 각각 0.8798, 0.6 mol h-1이며, 1000 ppm 일산화질소의 산화효율은 2 M 과산화수소, 체류시간 3 min의 최적조건에서 40%로 나타났다. 회분식 반응기에서 일산화질소 가스의 제거효율은 100, 300, 500, 1000, 1500 ppm으로 초기농도가 증가함에 따라 각각 65.0, 65.7, 66.4, 67.3, 68.1%로 제거효율이 증가하는 것으로 나타났다. 따라서 본 연구에서 제안하는 산화기술은 습식흡수공정과 연계를 통해 선박 후처리장치로 적용할 수 있다.
Air pollution associated with the NOx emission from the ship engines is becoming one of the major environmental concerns these days. As the regulations on ship pollutants are strengthened, the wet absorption method, for controlling complex pollutants in a confined space, has the advantage of simultaneously removing various pollutants, but the low solubility of nitrogen monoxide is drawback. In this study, for improving existing denitrification scrubber system, NO oxidation process by hydroxyl radical produced from irradiating UV light on H2O2 is suggested and the H2O2 decomposition rates and hydroxyl radical quantum yields were measured to find the optimum condition of H2O2 photolysis reaction. As a result, the optimum quantum yield and photolysis rate of H2O2 were 0.8798, 0.6 mol h-1 at 8 W, 2 M condition, and oxidation efficiency of 1000 ppm NO gas was 40%. In batch system, NO removal efficiency has a range of 65.0 ~ 67.3% according to input gas concentration of 100 ~ 1500 ppm. This results indicate that the scrubber system using hydrogen peroxide photolysis can be applied as air pollution prevention facility of ship engines.
  1. Caiazzo G, Langella G, Miccio F, Scala F, In 35th Meeting of the Italian Section of the Combustion Institute, Milano, Italy, 10-12 (2012).
  2. Eyring V, Corbett J, Institute of Atmospheric Physics, Viewed July, No. 4 (2007).
  3. Johansson L, Jalkanen J, Kalli J, Kukkonen J, Atmos. Chem. Phys., 13(22), 11375 (2013)
  4. Doo HW, The Korean Soc. Mar. Eng., 31(5), 486 (2007)
  5. Chang Y, Roh Y, Park H, Trans. Res. Part D: Trans. Environ., 28, 91 (2014)
  6. Bui Y, Wartsila Technical Journal: Marine/InDetail, 31-38 (2011).
  7. Vartia A, Port of Helsinki, No. 2 (2012).
  8. Cooper CD, Clausen CA, Pettey L, Collins MM, Pozo de FM, J. Environ. Eng.-ASCE, 128(1), 68 (2002)
  9. Liu YX, Zhang J, Ind. Eng. Chem. Res., 50(7), 3836 (2011)
  10. Liu Y, Zhang J, Sheng C, Zhang Y, Zhao L, Energy Fuels, 24(9), 4931 (2010)
  11. Liu YX, Zhang J, Wang ZL, Du M, Chem. Eng. Technol., 35(10), 1879 (2012)
  12. Rathi A, Rajor HK, Sharma RK, J. Hazard. Mater., 102(2), 231 (2003)
  13. Park JN, Hwang TM, Lee CW, J. Korean Ind. Eng. Chem., 14(5), 685 (2003)
  14. Lee SJ, Jeon BG, Choi GC, Seo JM, Korean Society for Atmospheric Environment, Proceeding of the 39th Meeting of KOSAE, 467-468 (2005).
  15. Volman DH, Chen JC, J. Am. Chem. Soc., 81(16), 4141 (1959)
  16. Lunak S, Sedlak P, J. Photochem. Photobiol. A-Chem., 68(1), 1 (1992)
  17. Mimoun H, Patai S, The Chemistry of Functional (1983).
  18. Kim EH, Kim YH, Yoo JH, Choi CS, Jeong DY, Korean Chem. Eng. Res., 35(3), 440 (1997)
  19. Glaze WH, Kang J, Chapin DH, Ozone-Sci. Eng., 9(4), 335 (1987)
  20. Thomas D, Vanderschuren J, Ind. Eng. Chem. Res., 36(8), 3315 (1997)