화학공학소재연구정보센터
Macromolecular Research, Vol.25, No.9, 924-930, September, 2017
Proton-Conducting Polymers Derived from Radiation Grafting and Sulphonation of Poly(tetraflouroethylene-perflourovinyl ether) Film with Three Rare-Earth Elements
E-mail:
Progress in the area of proton conducting polymer electrolyte membranes is closely with the enhancing of polymer electrolyte membrane fuel cells. Fluorinated polymers, e.g. poly(tetraflouroethylene-perflourovinyl ether) (PFA) film is largely driven by their thermal properties. In this article PFA film was developments to be suitable as proton conducting polymer electrolyte membranes. The grafting of acrylic acid (80%) onto the PFA film achieved by irradiation techniques and PFA-COOH was obtained. In addition, to synthesis of completely a new protonconducting sulfonated polymer ionomers this could be acheived by sequences of chemical modification steps. PFA-COOH has been anilination and sulfonated to a sufficient ionomers formation and complexion with the three rare-earth elements (Li, Cs, and Sr). After that the obtained PFA-CO-NH-ph-SO3M contains a sufficient equilibrium concentration of protons in a wet atmosphere to show useful proton conduction at ambient temperatures. The sulfonated polymers containing 63 mol% sulfonic acid, and characterized by FTIR-ATR and SEM The results show that PFACO- NH-ph-SO3M wet film showed a high proton-conductivity in water (10-3 Scm-1) rather than methanol (10-6 Scm-1) in order Li+> Sr++>Cs+. This approach has interesting potential for smart thin film materials and offers also the possibility to be used in sensors and fuel cells provided that the electrolyte film thickness is in the micrometre range.
  1. Jannasch P, Curr. Opin. Colloid Interface Sci., 8, 96 (2003)
  2. Costamagna P, Srinivasan S, J. Power Sources, 102(1-2), 242 (2001)
  3. Ha JW, Park S, Macromol. Res., 25(1), 1 (2017)
  4. Asatekin A, Barr MC, Baxamusa SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK, Mater. Today, 13, 26 (2010)
  5. Ghobashy MM, Khafaga MR, J. Supercond. Nov. Magn., 30, 401 (2016)
  6. Mazzei RO, Smolko E, Torres A, Tadey D, Rocco C, Gizzi L, Strangis S, Radiat. Phys. Chem., 64, 149 (2002)
  7. Ghobashy MM, Ultrason. Sonochem., 37, 529 (2017)
  8. El-Sawy NM, El-Rehim HAA, Elbarbary AM, Adv. Polym. Technol., 30(1), 21 (2011)
  9. Kang SA, Shin J, Fei G, Ko BS, Kim CY, Nho YC, Kang PH, J. Ind. Eng. Chem., 15(4), 516 (2009)
  10. El-Sawy NM, Al-Sagheer FA, Polym. Int., 47, 324 (1998)
  11. Thankamony RL, Lee MG, Kim K, Hong JD, Kim TH, Lee HJ, Kim HJ, Nam S, Lim YB, Macromol. Res., 18(10), 992 (2010)
  12. Kang SW, Choi SK, Hwang SS, Baek KY, Choi HM, Macromol. Res., 17(7), 455 (2009)
  13. Savadogo O, J. New Mat. Electrochem. Syst., 1, 47 (1998)
  14. Wright ME, Petteys BJ, Guenthner AJ, Fallis S, Yandek GR, Tomczak SJ, Minton TK, Brunsvold A, Macromolecules, 39(14), 4710 (2006)
  15. Hung MH, Burch RR, J. Appl. Polym. Sci., 55(4), 549 (1995)
  16. Eberhardt M, Mruk R, Zentel R, Theato P, Eur. Polym. J., 41, 1569 (2005)
  17. Noh I, Goodman SL, Hubbell JA, J. Biomater. Sci.-Polym. Ed., 9, 407 (1998)
  18. Liu H, Yang SH, Wang SL, Fang J, Jiang LH, Sun GQ, J. Membr. Sci., 369(1-2), 277 (2011)
  19. Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH, Anal. Chem., 80, 6850, DOI 10.1021/ac800185x (2008).
  20. Kyrychenko A, Rodnin MV, Vargas-Uribe M, Sharma SK, Durand G, Pucci B, Popot JL, Ladokhin AS, Biochim. Biophys. Acta (BBA)-Biomembranes, 1818, 1006 (2012)
  21. Xu T, Yang J, J. Nanomater, 2012, 275637 (2012)
  22. Cennamo N, Massarotti D, Galatus R, Conte L, Zeni L, Sensors, 13, 721 (2013)
  23. Tahir ZM, Alocilja EC, Grooms DL, Biosens. Bioelectron., 20, 1690 (2005)
  24. Yu X, Li Y, Zhu N, Yang Q, Kalantar-zadeh K, Nanotechnology, 18, 015201 (2006)
  25. Kang ET, Tan KL, Kato K, Uyama Y, Ikada Y, Macromolecules, 29(21), 6872 (1996)
  26. Elbarbary AM, Ghobashy MM, Carbohydr. Polym., 162, 16 (2017)
  27. Ghobashy MM, Elhady MA, Radiat. Phys. Chem., 134, 47 (2017)
  28. Ali AE, El-Rehiem HAA, Hegazy EA, Ghobashy MM, J. Macromol. Sci.-Pure Appl. Chem., 44, 91 (2007)
  29. El-Sawy NM, Elbarbary AM, J. Macromol. Sci.-Pure Appl. Chem., 49, 207 (2012)
  30. Ghobashy MM, Bassioni G, Adv. Polym. Technol., doi: 10.1002/ adv.21870 (2017).
  31. Ghobashy MM, Awad A, Elhady MA, Elbarbary AM, Cogent Chem., 3, 132877 (2017)
  32. Ghobashy MM, Reheem AMA, Mazied NA, Int. Polym. Process., 32(2), 174 (2017)
  33. Ghobashy MM, Khozemey E, Adv. Polym. Technol., DOI: 10.1002/adv.21781(2016).
  34. Nasef MM, Saidi H, Dahlan KZM, Radiat. Phys. Chem., 68, 875 (2003)
  35. Magalhaes ASG, Neto MPA, Bezerra MN, Ricardo NMPS, Feitosa JPA, Quim. Nova, 35, 1464 (2012)
  36. Muller F, Ferreira CA, Franco L, Puiggali J, Aleman C, Armelin E, J. Phys. Chem. B, 116(38), 11767 (2012)
  37. Pachler KGR, Matlok F, Gremlich HU, Merck FT-IR Atlas, VCH Verlagsgesellschaft mbH, Weinheim, 1988.
  38. Gil M, Ji XL, Li XF, Na H, Hampsey JE, Lu YF, J. Membr. Sci., 234(1-2), 75 (2004)
  39. Rivera I, Kumar A, Ortega N, Katiyar RS, Lushnikov S, Solid State Commun., 149, 172 (2009)
  40. Riad AS, Korayem MT, Abdel-Malik TG, Physica B, 270, 140 (1999)
  41. Heikes RR, Johnston WD, J. Chem. Phys., 26, 582 (1957)