화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.55, 204-214, November, 2017
Diisopropyldithiophosphoric acid-impregnated macroporous non-ionogenic styrene-divinylbenzene polymeric sorbent (Porolas) for effective copper extraction
E-mail:,
The extraction and sorption of copper from wastewaters can be improved by applying solvent- impregnated resins (SIRs) with chelating organic extractant. The SIRs are capable of increasing the sorption capacity of expensive ion-exchange resin in order to enhance the performance of traditional liquid.liquid extraction by organic solvents thus reducing copper pollution in water. In this present study, macroporous non-ionogenic styrene-divinylbenzene polymeric sorbent (Porolas) matrix was impregnated with diisopropyldithiophosphoric acid (DIPDTP) to enhance Cu2+ sorption in aqueous system. The influence of pore-filling degree (0-100%) by DIPDTP on copper sorption from aqueous chloride solution (pH = 1.95-10.7) was also evaluated. Higher degree of pore-filling by DIPDTP led to a significant decrease of the specific surface area (SBET) of the DIPDTP-Porolas sorbents, confirming an effective impregnation. The Cu2+ adsorption isotherm fitted well for Freundlich isotherm, and the maximum KF (8.45 g L-1) was obtained for 50% DIPDTP-Porolas with 97-99% Cu2+ uptake due to the formation of Cu2+ -complexes, CuCltL2-t(HL)q. The Cu2+ adsorption kinetic followed pseudo-second-order kinetic model at pH = 4-5 while the Lemna minor ecotoxicity test revealed absence of toxic secondary pollution of wastewater. The DIPDTP-impregnated Porolas was found to be an efficient sorbent for simple, safe, and environment-friendly extraction of Cu2+ from industrial wastewaters using small amount of organic solvent.
  1. DeSimone JM, Science, 297, 799 (2002)
  2. Frohlich P, Lorenz T, Martin G, Brett B, Bertau M, Angew. Chem.-Int. Edit., 56, 2544 (2017)
  3. Grey CP, Tarascon JM, Nat. Mater., 16(1), 45 (2017)
  4. Hudson-Edwards K, Science, 352(6283), 288 (2016)
  5. Peng H, Kroneck PM, Kupper H, Environ. Sci. Technol., 47, 6120 (2013)
  6. Kabay N, Cortina JL, Trochimczuk A, Streat M, React. Funct. Polym., 70(8), 484 (2010)
  7. Bao SX, Tang YP, Zhang YN, Liang L, Chem. Eng. Technol., 39(8), 1377 (2016)
  8. Wei S, Liu J, Zhang S, Chen X, Liu X, Hydrometallurgy, 164, 219 (2016)
  9. Li H, Liu J, Gao X, Liu C, Liu C, Hydrometallurgy, 121-124, 60 (2012)
  10. Yuan Y, Liu J, Zhou B, Yao S, Xu W, Hydrometallurgy, 101, 148 (2010)
  11. Belkhouche NE, Didi MA, Hydrometallurgy, 103, 60 (2010)
  12. Luca V, Hanna JV, Hydrometallurgy, 154, 118 (2015)
  13. Meshram P, Pandey BD, Mankhand TR, Hydrometallurgy, 150, 192 (2014)
  14. Quinn JE, Soldenhoff KH, Hydrometallurgy, 152, 7 (2015)
  15. Liu J, Gao X, Liu C, Guo L, Jin R, Hydrometallurgy, 137, 140 (2013)
  16. Yang WW, Luo GS, Gong XC, Hydrometallurgy, 80, 179 (2005)
  17. Bezhin NA, Dovhyi II, Lyapunov AY, J. Radioanal. Nucl. Chem., 311, 317 (2017)
  18. Hosseini MS, Bazrafshan AA, Hosseini-Bandegharaei A, Sep. Sci. Technol., 51, 1328 (2016)
  19. Navarro R, Ruiz P, Saucedo I, Guibal E, Sep. Purif. Technol., 135, 268 (2014)
  20. Sharma S, Ghosh SK, Sharma JN, Sep. Sci. Technol., 51, 929 (2016)
  21. Sparfel D, Cote G, Ion Exch., 22, 1 (2004)
  22. Juang RS, Proc. Natl. Sci. Counc. ROC, 23, 353 (1999)
  23. Vaughan J, Dieters C, Fu W, Byrne K, Miner. Eng., 88, 2 (2016)
  24. Ying X, Fang Z, J. Hazard. Mater., 137(3), 1636 (2006)
  25. Strikovsky AG, Jerabek K, Cortina JL, Sastre AM, Warshawsky A, React. Funct. Polym., 28(2), 149 (1996)
  26. Rovira M, Cortina JL, Arnaldos J, Sastre AM, Solvent Extr. Ion Exch., 17, 351 (1999)
  27. Alimarin IP, Rodionova TV, Ivanov VM, Russ. Chem. Rev., 58, 863 (1989)
  28. Sharipov KT, Daminova SS, Talipova LL, J. Struc. Chem., 43, 369 (2002)
  29. Warshawsky A, Strikovsky AG, Jerabek K, Cortina JL, Solvent Extr. Ion Exch., 15, 259 (1997)
  30. Strikovsky AG, Warshawsky A, Hankova L, Jerabek K, Acta Polym., 49, 600 (1998)
  31. Warshawsky A, Strikovsky AG, Fernandez FN, Jerabek K, Sep. Sci. Technol., 37(4), 823 (2002)
  32. Tang YP, Bao SX, Zhang YM, Liang L, React. Funct. Polym., 113, 50 (2017)
  33. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  34. Liu CW, Stubbs T, Staples RJ, Fackler JP, J. Am. Chem. Soc., 117(38), 9778 (1995)
  35. Mohamed AA, Burini A, Galassi R, Paglialunga D, Galan-Mascaros JR, Dunbar KR, Fackler JP, Inorg. Chem., 46(7), 2348 (2007)
  36. Lawton SL, Rohrbaugh WJ, Kokotailo GT, Inorg. Chem., 11, 612 (1972)
  37. Nifant’yeva LV, Smirnova EI, Research Institute on Technical-Economic Studies in Chemical Industry, Moscow, 1973 52 p. [in Russian].
  38. Cortina JL, Miralles N, Sastre AM, Aguilar M, Hydrometallurgy, 37, 301 (1995)
  39. Metwally SS, Hassan MA, Aglan RF, J. Environ. Chem. Eng., 1, 252 (2013)
  40. Skjolding LM, Sørensen SN, Hartmann NB, Hjorth R, Hansen SF, Baun A, Angew. Chem.-Int. Edit., 55, 15224 (2016)
  41. Czech B, Hojamberdiev M, J. Photochem. Photobiol. A-Chem., 324, 70 (2016)
  42. Clark NA, J. Phys. Chem., 29, 935 (1924)
  43. Kadirova ZC, Hojamberdiev M, Katsumata KI, Isobe T, Matsushita N, Nakajima A, Okada K, Environ. Sci. Pollut. Res., 21, 4309 (2014)
  44. Brain RA, Ramirez AJ, Fulton BA, Chambliss CK, Brooks BW, Environ. Sci. Technol., 42, 8965 (2008)
  45. Yildiz E, Sacmaci S, Kartal S, Sacmaci M, Food Chem., 194, 143 (2016)
  46. Sacmaci S, Sahan S, Sahin U, Kartal S, Ulgen A, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 44, 240 (2014)
  47. Sacmaci S, Yilmaz Y, Kartal S, Kaya M, Duman F, Biol. Trace Elem. Res., 159, 254 (2014)
  48. Sacmaci S, Kartal S, Sacmaci M, Soykan C, Bull. Korean Chem. Soc., 32, 444 (2011)