Biochemical and Biophysical Research Communications, Vol.491, No.2, 530-536, 2017
Thymol inhibits bladder cancer cell proliferation via inducing cell cycle arrest and apoptosis
Thymol is a phenolic compound with various pharmacological activities such as anti-inflammatory, antibacterial and anti-tumor effects. However, the effect of thymol on bladder cancer cell growth is still elusive. The purpose of this study is to investigate the efficacy of thymol in bladder cancer cells and its underlying mechanism. Thymol inhibited bladder cancer cell proliferation in a dose and time-dependent manner. We also observed cell cycle arrest at the G2/M phase after the treatment of thymol. Moreover, thymol could induce apoptosis in bladder cancer cells via the intrinsic pathway along with caspase-3/9 activation, release of cytochrome c and down-regulation of anti-apoptotic Bcl-2 family proteins. The activation of JNK and p38 was also critical for thymol-induced apoptosis since it was abrogated by the treatment of JNK inhibitor (SP600125), and p38 inhibitor (SB203580) but not ERK inhibitor (SCH772984). Furthermore, the generation of ROS (reactive oxygen species) was detected after the treatment of thymol. ROS scavenger NAC (N-acetyl cysteine) could block the thymol-triggered apoptosis and activation of MAPKs. These findings offer a novel therapeutic approach for bladder cancer. (C) 2017 Published by Elsevier Inc.