Journal of Power Sources, Vol.363, 9-15, 2017
Synthesis of highly effective MnO2 coated carbon nanofibers composites as low cost counter electrode for efficient dye-sensitized solar cells
In this work, MnO2 coated carbon nanofiber (MnO2/CNF) composites have been synthesized using a combination of electrospinning and hydrothermal techniques. First, CNFs are synthesized by electrospinning, then coated them with MnO2 based on the self-limiting reaction between CNFs and KMnO4. The prepared composites of MnO2/CNFs are used as a low-cost counter electrode (CE) for dye-sensitized solar cells (DSSCs). It is found that the composite MnO2/CNFs-3, corresponding to a 100 nm thick MnO2 coating resulted in the highest catalytic activity, moreover the corresponding DSSC shows a power conversion efficiency (PCE) of 8.86%, higher than that of the Pt CE based DSSC (8.27%). (C) 2017 Published by Elsevier B.V.