Journal of Power Sources, Vol.362, 64-72, 2017
Rational construction of nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer as the battery-like electrode for supercapacitors
Herein, binder-free hierarchically structured nickel cobalt sulfide nanoflakes on CoO nanosheets with the help of carbon layer (Ni-Co-S@C@CoO NAs) are fabricated via hydrothermal synthesis, carbonization treatment and electrodeposition, where three key components (CoO nanosheet arrays, a carbon layer and Ni-Co-S nanoflakes) are strategically combined to construct an efficient electrode for supercapacitors. The highly well-defined COO nanosheets are utilized as ideal conductive scaffolds, where the conductivity is further improved by coating carbon layer, as well as the large electroactive surface area of Ni-Co-S nanoflakes. Furthermore, self-supported electrodes are directly grown on Ni foam without conductive additives or binders, which can effectively simplify the whole preparation process and achieve excellent electrical contact. Benefiting from the unique structural features, the hierarchically structured Ni-Co-S@C@CoO NAs exhibit high specific capacitance up to 4.97 F cm(-2), excellent rate capability, and maintains 93.2% of the initial capacitance after 10000 cycles. Furthermore, an asymmetric supercapacitor using the Ni-Co-S@C@CoO NAs electrode and activated carbon is assembled, which achieves a high energy density (49.7 W h kg(-1)) with long cycling lifespan. These results demonstrate the as-fabricated Ni-Co-S@C@CoO NAs can be a competitive battery-like electrode for supercapacitors in energy storages. (C) 2017 Elsevier B.V. All rights reserved.