화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.56, 375-381, December, 2017
Fabrication of a pumpless, microfluidic skin chip from different collagen sources
E-mail:,
Current skin-equivalents do not recapitulate the full functionalities of human skin, and recent efforts have been towards reproduction of 3D architecture of skin, as well as realization of vasculature using microfluidics. These microfluidic skin-on-a-chips use extracellular matrix proteins as a scaffold material for cell culture. Choice of optimal scaffold material is essential for properly recapitulating the tissue microenvironment. Here, we tested collagens from different sources, rat tail, porcine skin, and duck feet, comparing their abilities to support cell growth and differentiation. The viability was compared, and immunohistochemistry was used to evaluate differentiation of the skin constructs using different scaffold materials. The collagens from different sources had distinct mechanical properties, as well as the degree of contraction upon fibroblast culture. The morphology of skin tissue and the microstructure of the construct were also different, depending on the collagen sources and culture conditions. Our study provides valuable information about the choice of scaffold materials for constructing a 3D skin model.
  1. Watt FM, Huck WTS, Nat. Rev. Mol. Cell Biol., 14(8), 467 (2013)
  2. van de Stolpe A, den Toonder J, Lab Chip, 13, 3449 (2013)
  3. Grosberg A, Alford PW, McCain ML, Parker KK, Lab Chip, 11(24), 4165 (2011)
  4. Cukierman E, Pankov R, Stevens DR, Yamada KM, Science, 294, 1708 (2001)
  5. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA, BMC Biol., 10(1), 1 (2012)
  6. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Paul Solomon FD, J. Cell. Physiol., 230(1), 16 (2015)
  7. Lee GY, Kenny PA, Lee EH, Bissell MJ, Nat. Methods, 4(4), 359 (2007)
  8. Mazzoleni G, Lorenzo DD, Steimberg N, Genes Nutr., 13-22 (2009).
  9. Wenger MPE, Bozec L, Horton MA, Mesquida P, Biophys. J., 93(4), 1255 (2007)
  10. Li S, Lao JM, Chen BPC, Li YS, Zhao YH, Chu J, Chen KD, Tsou TC, Peck K, Chien S, FASEB J., U346-U370 (2002).
  11. El Ghalbzouri A, Commandeur S, Rietveld MH, Mulder AA, Willemze R, Biomaterials, 30(1), 71 (2009)
  12. Kim G, Ahn S, Yoon H, Kim Y, Chun W, J. Mater. Chem., 19(46), 8817 (2009)
  13. Kim SH, Park HS, Lee OJ, Chao JR, Park HJ, Lee JM, Ju HW, Moon BM, Park YR, Song JE, Khang G, Park CH, Int. J. Biol. Macromol., 85, 442 (2016)
  14. Lin YK, Liu DC, Food Chem., 99(2), 244 (2006)
  15. Lee S, Jin SP, Kim YK, Sung GY, Chung JH, Sung JH, Biomed. Microdevices, 19(2), 1 (2017)
  16. Raub CB, Suresh V, Krasieva T, Lyubovitsky J, Mih JD, Putnam AJ, Tromberg BJ, George SC, Biophys. J., 92(6), 2212 (2007)
  17. Provenzano PP, Vanderby R, Matrix Biol., 25(2), 71 (2006)
  18. Rho KS, Jeong L, Lee G, Seo BM, Park YJ, Hong SD, Roh S, Cho JJ, Park WH, Min BM, Biomaterials, 27(8), 1452 (2006)
  19. Bottcher-Haberzeth S, Biedermann T, Reichmann E, Burns, 36, 450 (2010)
  20. Mathes SH, Ruffner H, Graf-Hausner U, Adv. Drug Deliv. Rev., 81-102 (2014).
  21. Jiang LW, Chen H, Lu H, J. Dermatol. Sci., 81(1), 26 (2016)
  22. Buskermolen JK, Reijnders CMA, Spiekstra SW, Steinberg T, Kleverlaan CJ, Feilzer AJ, Bakker AD, Gibbs S, Tissue Eng. Part C Methods, 1-33 (2016).
  23. Li X, Nan K, Li L, Zhang Z, Chen H, Carbohydr. Polym., 88(1), 84 (2012)
  24. Segnani C, Ippolito C, Antonioli L, Pellegrini C, Blandizzi C, Dolfi A, Bernardini N, PLoS One, 10(12), 1 (2015)