화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.57, 154-159, January, 2018
Drying characteristics of low rank coals in a pressurized flash drying system
E-mail:
Drying characteristics of low rank coals were examined and determined using a pressurized flash drying system which consisted of a pressurized feeder, rolled tubes (maximum of 6 m), a cyclone, and a back pressure regulator. The effect of the operating conditions, such as pressure (maximum of 40 bar), gas outlet temperature (maximum of 300 °C), particle sizes (212-300 and 300-355 mm) and residence time (maximum of 1 s) on the drying ratio was investigated and analyzed. The study results show that temperature is a more effective factor than pressure. A correlation equation to predict the drying ratio of coals was suggested based on operation conditions.
  1. Xu C, Xu G, Zhao SF, Zhou LY, Yang YP, Zhang DK, Appl. Energy, 160, 882 (2015)
  2. http://www.bp.com/en/global/corporate/energy-economics/statistical-re-view-of-world-energy.html (Accessed 6 February 2017).
  3. Ohm TI, Chae JS, Lim JH, Moon SH, J. Mech. Sci. Technol., 26, 1299 (2012)
  4. Kim SD, Lim KS, Lee SH, J. Korean Soc. Combust., 6, 383 (2010)
  5. Rao ZH, Zhao YM, Huang CL, Duan CL, He JF, Prog. Energy Combust. Sci., 46, 1 (2015)
  6. Song Yinmin, Feng Wei, Li Na, Li Yang, Zhi Keduan, Teng Yingyue, He Runxia, Zhou Huacong, Liu Quansheng, Fuel, 183, 659 (2016)
  7. Sakaguchi M, Laursen K, Nakagawa H, Miura K, Fuel Process. Technol., 89(4), 391 (2008)
  8. Vuthaluru HB, Brooke RJ, Zhang DK, Yan HM, Fuel Process. Technol., 81(1), 67 (2003)
  9. Niksa S, Krishnakumar B, Fuel, 159, 345 (2015)
  10. Jangam SV, Karthikeyan M, Mujumdar AS, Dry. Technol., 29, 395 (2011)
  11. Karthikeyan M, Zhonghua W, Mujumdar AS, Dry. Technol., 27, 403 (2009)
  12. Allardice DJ, Clemow LM, Favas G, Jackson WR, Marshall M, Sakurovs R, Fuel, 82(6), 661 (2003)
  13. Agraniotis M, Koumanakos A, Doukelis A, Karellas S, Kakaras E, Energy, 45(1), 134 (2012)
  14. Domazetis G, Barilla P, James BD, Glaisher R, Fuel Process. Technol., 89(1), 68 (2008)
  15. Defraeye T, Appl. Energy, 131, 323 (2014)
  16. Allardice D, Chaffee A, Jackson W, Marshall M, in: C.Z. Li (Ed.), Advances in the Science of Victorian Brown Coal, Elsvier, Amsterdam, Netherlands, 2004.
  17. Osman H, Jangam SV, Lease JD, Mujumdar AS, Dry. Technol., 29, 1763 (2011)
  18. Atsonios K, Violidakis I, Agraniotis M, Appl. Therm. Eng., 74, 165 (2015)
  19. Kakaras E, Ahladas P, Syrmopoulos S, Fuel, 81(5), 583 (2002)
  20. Liu M, Yan JJ, Chong DT, Liu JP, Wang JS, Energy, 49, 107 (2013)
  21. Katalambula H, Gupta R, Energy Fuels, 23(7), 3392 (2009)
  22. Aziz M, Kansha Y, Kishimoto A, Kotani Y, Liu YP, Tsutsumi A, Fuel Process. Technol., 104, 16 (2012)
  23. Liu Y, Ohara H, Fuel Process. Technol., 155, 200 (2017)
  24. Nikolopoulos N, Violidakis I, Karampinis E, Agraniotis M, Bergins C, Grammelis P, Kakaras E, Fuel, 155, 86 (2015)
  25. Gao JR, Tao XX, Hou T, Wan YZ, Clean Coal Technol., 14, 73 (2008)
  26. Jiang B, Li S, Gao JR, Liang GL, Meng H, Yang ZG, Clean Coal Technol., 17, 69 (2011)
  27. Hoehne O, Lechner S, Schreiber M, Dry. Technol., 28, 5 (2009)
  28. Bergins C, Fuel, 82(4), 355 (2003)
  29. Wu JH, Liu JZ, Zhang X, Wang ZH, Zhou JH, Cen KF, Fuel, 148, 139 (2015)
  30. Eom TG, Choi SM, J. Korean Soc. Combust., 20, 1 (2015)
  31. http://www.modernpowersystems.com/features/featureinterest-grows/fea-tureinterest-grows-3.html (Accessed 31 July 2017).
  32. Liu GS, Rezaei HR, Lucas JA, Harris DJ, Wall TF, Fuel, 79, 1767 (2000)
  33. Kunii D, Levenspiel O, Fluidization Engineering, 2nd ed., Butterworth-Heinemann, Boston, USA, 2013.
  34. Jia DN, Bi XT, Lim CJ, Sokhansanj S, Tsutsumi A, Fuel, 186, 270 (2016)