화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.2, 196-200, April, 2018
다양한 형태의 금속 산화물을 이용한 Pd계 복합 수소분리막의 2원계 중간층 형성에 관한 연구
A Study of the Formation of Binary Intermediate Layer on Pd-based Hydrogen Separation Membrane Using Various Types of Metal Oxides
E-mail:
초록
본 연구에서는 복합 수소분리막 중간층의 pin hole, crack 및 defect를 최소화하기 위하여 powder type과 sol type의 금속 산화물을 이용하여 복합화하였다. 중간층의 표면 형상과 투과 특성은 주사전자현미경(SEM) 분석과 N2 투과도 테스트를 통해 평가하였으며, 제조한 수소분리막의 성능평가를 위해 N2와 H2를 이용하여 단일가스 투과 테스트를 수행하였다. Powder type과 sol type의 금속산화물을 각각 이용하여 중간층을 적층한 결과 sol type 금속산화물을 이용하여 적층한 중간층의 표면 조도가 매우 낮았으며, 특히 TiO2 sol로 형성된 중간층의 pin-hole, crack 및 defect가 현저히 감소하였다. Powder와 sol을 복합화하여 적층한 중간층은 sol로 형성된 중간층과 거의 유사한 특성을 보였으며, 이를 기반으로 제조한 수소분리막은 1 bar의 압력구배, 672 K의 온도에서 약 0.32 mol/m2s의 수소 투과도를 나타내었으며, 선택도는 약 10,890 이상으로 측정되었다.
In this study, the intermediate layer in Pd-based hydrogen separation membrane was synthesized to minimize the surface roughness and defects using powder-type and sol-type metal oxides. The surface properties and gas permeation characteristics were analysed by SEM and N2 gas permeation test. The coating layer composed of sol type metal oxides has smooth surface, especially the layer coated by TiO2 sol has little pin holes, cracks and defects. The binary layer composed of powder type and sol type metal oxides has similar flux characteristics to a single sol type layer. The Pd-based composite membrane improved by the binary intermediate layer exhibited 0.32 mol/m2s of the hydrogen permeation flux with a selectivity (H2/N2) of ~10,890 at 672 K and a pressure difference of 1 bar.
  1. Sheffield JW, Assessment of Hydrogen Energy for Sustainable Development, p. 1-8, Springer, Dordrecht, Netherlands (2007).
  2. Conti J, Holtberg P, International Energy Outlook 2011, U.S. Energy Information Administration, Washington (2011).
  3. Ryi SK, Han JY, Kim CH, Lim HW, Jung HY, Clean Technol., 23(2), 121 (2017)
  4. Armaroli N, Balzani V, Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future, Wiley-VCH, Weinheim, Germany (2011).
  5. Abbasi T, Abbasi SA, Renew. Sust. Energ. Rev., 15, 3034 (2011)
  6. Merkel TC, Zhou MJ, Baker RW, J. Membr. Sci., 389, 441 (2012)
  7. Shao L, Low BT, Chung TS, Greenberg AR, J. Membr. Sci., 327(1-2), 18 (2009)
  8. Bernardo P, Drioli E, Golemme G, Ind. Eng. Chem. Res., 48(10), 4638 (2009)
  9. Ockwig NW, Nenoff TM, Chem. Rev., 107(10), 4078 (2007)
  10. Uemiya S, Sep. Purif. Methods, 28(1), 51 (1999)
  11. Dittmeyer R, Hollein V, Daub K, J. Mol. Catal. A-Chem., 173(1-2), 135 (2001)
  12. Ryi SK, Xu N, Li AW, Lim CJ, Grace JR, Int. J. Hydrog. Energy, 35(6), 2328 (2010)
  13. Shi ZL, Wu SQ, Szpunar JA, J. Membr. Sci., 284(1-2), 424 (2006)
  14. Ryi SK, Park JS, Hwang KR, Lee CB, Lee SW, Int. J. Hydrog. Energy, 36(21), 13776 (2011)
  15. Ryi SK, Ahn HS, Park JS, Kim DW, Int. J. Hydrog. Energy, 39(9), 4698 (2014)
  16. Ryi SK, Lee SW, Oh DK, Seo BS, Park JW, Park JS, Lee DW, Kim SS, J. Membr. Sci., 467, 93 (2014)
  17. Tarditi A, Gerboni C, Cornaglia L, J. Membr. Sci., 428, 1 (2013)
  18. Sanz R, Calles JA, Alique D, Furones L, Ordonez S, Marin P, Corengia P, Fernandez E, Int. J. Hydrog. Energy, 36(24), 15783 (2011)
  19. Straczewski G, Voller-Blumenroth J, Beyer H, Pfeifer P, Steffen M, Felden I, Heinzel A, Wessling M, Dittmeyer R, Chem. Eng. Process., 81, 13 (2014)
  20. Shu J, Adnot A, Grandjean BP, Kaliaguine S, Thin Solid Films, 286(1-2), 72 (1996)
  21. Qiao AL, Zhang K, Tian Y, Xie LL, Luo HJ, Lin YS, Li YD, Fuel, 89(6), 1274 (2010)
  22. Bosko ML, Miller JB, Lombardo EA, Gellman AJ, Cornaglia LM, J. Membr. Sci., 369(1-2), 267 (2011)
  23. Bosko ML, Munera JF, Lombardo EA, Cornaglia LM, J. Membr. Sci., 364(1-2), 17 (2010)
  24. Calles JA, Sanz R, Alique D, Int. J. Hydrog. Energy, 37(7), 6030 (2012)
  25. Ryi SK, Lee SW, Oh DK, Seo BS, Park JW, Park JS, Lee DW, Kim SS, J. Membr. Sci., 467, 93 (2014)
  26. Kim SS, Xu N, Li AW, Grace JR, Lim CJ, Ryi SK, Int. J. Hydrog. Energy, 40(8), 3520 (2015)