화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.62, 265-272, June, 2018
Comparison of ball milling-hydrothermal and hydrothermal methods for synthesis of ZnO nanostructures and evaluation of their photocatalytic performance
E-mail:,
Zinc oxide nanostructures with different morphologies, were successfully synthesized by two methods (hydrothermal and ball mill-hydrothermal), and characterized by common techniques. The effects of the ball mill and base type on the photocatalytic activity of ZnO nanostructures synthesized by each methods were evaluated for phenazopyridine (PhP) degradation. ZnO nanoparticles with quasi-prismatic morphology (synthesized by ball mill-hydrothermal and KOH) displayed a higher photocatalytic activity (45%) than the other ZnO nanostructures. The ball milling before hydrothermal process caused changing in the morphology, increasing the specific surface area, and improving the photocatalytic activity as well as changing the optical properties.
  1. Ma J, Yang M, Yu F, Zheng J, Sci. Rep., 5 (2015)
  2. Colmenares JC, Xu YJ, Heterogeneous Photocatalysis: From Fundamentals to Green Applications, Springer, 2016.
  3. Nezamzadeh-Ejhieh A, Khodabakhshi-Chermahini F, J. Ind. Eng. Chem., 20(2), 695 (2014)
  4. Lee KM, Lai CW, Ngai KS, Juan JC, Water Res., 88, 428 (2016)
  5. Mousavi SM, Mahjoub AR, Abazari R, RSC Adv., 5, 107378 (2015)
  6. Wang Z, Zhang L, Zhao J, Xing B, Environ. Sci.: Nano, 3, 240 (2016)
  7. El-Kemary M, El-Shamy H, El-Mehasseb I, J. Lumines., 130, 2327 (2010)
  8. Kirkegaard P, Hansen SF, Rygaard M, Environ. Sci.: Nano, 2, 191 (2015)
  9. Li CL, Han C, Zhang YB, Zang ZG, Wang M, Tang XS, Du JH, Sol. Energy Mater. Sol. Cells, 172, 341 (2017)
  10. Mashkouri S, Ghafouri M, Arsalani N, Bazazi S, Mostafavi H, J. Mater. Sci.:Mater. Electron., 1 (2017).
  11. Li C, Zang Z, Han C, Hu Z, Tang X, Du J, Leng Y, Sun K, Nano Energy, 40, 195 (2017)
  12. Zang Z, Wen M, Chen W, Zeng Y, Zu Z, Zeng X, Tang X, Mater. Des., 84, 418 (2015)
  13. Zang Z, Tang X, J. Alloy. Compd., 619, 98 (2015)
  14. Jianzhong M, Liu J, Bao Y, Zhu Z, Liu H, Cryst. Res. Technol., 48, 251 (2013)
  15. Maiti S, Pal S, Chattopadhyay KK, CrystEngComm, 17, 9264 (2015)
  16. Hernandez S, Hidalgo D, Sacco A, Chiodoni A, Lamberti A, Cauda V, Tresso E, Saracco G, Phys. Chem. Chem. Phys., 17, 7775 (2015)
  17. Kołodziejczak-Radzimska A, Jesionowski T, Materials, 7, 2833 (2014)
  18. Sahdan MZ, Mamat MH, Salina M, Khusaimi Z, Noor UM, Rusop M, Phys. Status Solidi C, 7, 2286 (2010)
  19. Stolle A, Ranu B, Ball Milling Towards Green Synthesis: Applications, Projects, Challenges, The Royal Society of Chemistry, Cambridge, 2015, doi:http://dx.doi.org/10.1039/9781782621980.
  20. Xing T, Sunarso J, Yang W, Yin Y, Glushenkov AM, Li LH, Howlett PC, Chen Y, Nanoscale, 5, 7970 (2013)
  21. Amirkhanlou S, Ketabchi M, Parvin N, Mater. Lett., 86, 122 (2012)
  22. Peng WX, Wang KJ, Hu J, Wang YT, Trans Tech Publications Inc, p. 80 2014.
  23. Khataee A, Rad TS, Vahid B, Khorram S, Ultrason. Sonochem., 33, 37 (2016)
  24. Green ED, Zimmerman RC, Ghurabi WH, Colohan DP, J. Am. Coll. Emerg. Physicians, 8, 426 (1979)
  25. Zyoud AH, Zaatar N, Saadeddin I, Ali C, Park D, Campet G, Hilal HS, J. Hazard. Mater., 173(1-3), 318 (2010)
  26. Fathinia M, Khataee AR, J. Ind. Eng. Chem., 19(5), 1525 (2013)
  27. Fathinia M, Khataee A, Appl. Catal. A: Gen., 491, 136 (2015)
  28. Association APH, Association AWW, Federation WPC, Federation WE, American Public Health Association, 1915.
  29. Kusumam TA, Panakkal T, Divya T, Nikhila M, Anju M, Anas K, Renuka N, Ceram. Int., 42, 3769 (2016)
  30. Warren BE, X-ray Diffraction, Courier Corporation, 1969.
  31. Wang Y, Li X, Lu G, Chen G, Chen Y, Mater. Lett., 62, 2359 (2008)
  32. Yin Q, Qiao R, Li Z, Zhang XL, Zhu L, J. Alloy. Compd., 618, 318 (2015)
  33. Song LM, Zhang SJ, Wu XQ, Wei QW, Ind. Eng. Chem. Res., 51(13), 4922 (2012)
  34. Kim S, Kim M, Kim T, Baik H, Lee K, CrystEngComm, 15, 2601 (2013)
  35. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  36. Selvam NCS, Vijaya JJ, Kennedy LJ, J. Colloid Interface Sci., 407, 215 (2013)
  37. Sun H, Yu Y, Luo J, Ahmad M, Zhu J, CrystEngComm, 14, 8626 (2012)
  38. Mujtaba J, Sun H, Fang F, Ahmad M, Zhu J, RSC Adv., 5, 56232 (2015)
  39. Rai P, Kwak WK, Yu YT, ACS Appl. Mater. Interfaces, 5, 3026 (2013)
  40. Flores NM, Pal U, Galeazzi R, Sandoval A, RSC Adv., 4, 41099 (2014)
  41. Liu TJ, Wang Q, Jiang P, RSC Adv., 3, 12662 (2013)
  42. Panthi G, Park M, Kim HY, Lee SY, Park SJ, J. Ind. Eng. Chem., 21, 26 (2015)
  43. Baruah S, Mahmood MA, Myint MTZ, Bora T, Dutta J, Beilstein J. Nanotechnol., 1, 14 (2010)
  44. Wang Y, Lau S, Lee H, Yu S, Tay B, Zhang X, Hng H, J. Appl. Phys., 94, 354 (2003)
  45. Cho S, Ma J, Kim Y, Sun Y, Wong GK, Ketterson JB, Appl. Phys. Lett., 75, 2761 (1999)
  46. Balamurugan S, Joy J, Godwin MA, Selvamani S, Raja TG, Optical and Photo-catalytic Properties, AIP Publishing, p. 050121 2016.
  47. Moballegh A, Shahverdi H, Aghababazadeh R, Mirhabibi A, Surf. Sci., 601, 2850 (2007)