화학공학소재연구정보센터
Polymer(Korea), Vol.42, No.3, 394-399, May, 2018
사슬 연장제의 에폭시기 함량에 의해 개질된 Poly(lactic acid)의 유변 물성
Rheological Properties of Poly(lactic acid) Modified by Contents of Epoxy Group in Chain Extender
E-mail:
초록
Poly(latic acid)(PLA)는 신재생 자원을 이용하여 생산한 친환경 고분자이나, 용융 강도(melt strength)가 낮아서 발포제품 등에 적용이 어렵다. 이 문제를 해결하기 위해서 일반적으로 사슬 연장제(chain extender)를 사용하여 PLA의 용융 강도를 향상시키고 있다. 본 연구에서는 스티렌 단량체와 메틸 메타아크릴레이트(methyl methacrylate) 의 비율을 3.5:1로 일정하게 유지하고, 에폭시 함량을 결정하는 글리시딜 메타아크릴레이트(glycidyl methacrylate)는 총 단량체 대비 35~65% 범위로 조절하여 사슬 연장제를 중합하였다. 에폭시기 함유 사슬 연장제로 개질된 PLA의 저장 탄성률, 손실 탄성률, 복합 점도, 신장 점도를 측정하고 비교하였다. 사슬 연장제의 에폭시기 함량이 증가할수록 저장 탄성률과 손실 탄성률이 일치하는 교차점이 각주파수가 작은 방향으로 이동하였다. 사슬연장제로 개질된 PLA를 탄산수소나트륨으로 발포한 결과 발포 형성이 잘 이루어 졌으며 에폭시기의 함량이 많은 경우 발포 배율이 더 증가하였다.
Poly(lactic acid) (PLA) is an eco-friendly polymer produced by using renewable resources, but it is difficult to apply it to foamed products because of low melt strength. In order to solve this problem, a chain extender is generally used to improve the melt strength of PLA. In this study, glycidyl methacrylate, which determined the epoxy contents, was used in the range of 35 to 65 wt% in polymerization, while the ratio of styrene monomer to methyl methacrylate remained constant at the ratio of 3.5: 1. The storage modulus, loss modulus, complex viscosity, and elongational viscosity of PLA modified with chain extender containing different epoxy group contents were measured and compared. As the epoxy group content of the chain extender increased, the crossover points where the storage modulus and the loss modulus coincided shifted toward smaller level of angular frequency. The PLAs modified with chain extenders were foamed with sodium hydrogen carbonate. The foams were formed well and the expansion ratios were further increased when the content of epoxy group in chain extender was large.
  1. Dorgan JR, Lehermeier H, Mang M, J. Polym. Environ., 8, 1 (2000)
  2. Lehermeier HJ, Dorgan JR, Polym. Eng. Sci., 41(12), 2172 (2001)
  3. Garlotta D, J. Polym. Environ., 9, 63 (2001)
  4. Drumright RE, Gruber PR, Henton DE, Adv. Mater., 12(23), 1841 (2000)
  5. Larsen A, Neldin C, Polym. Eng. Sci., 53(5), 941 (2013)
  6. Zhong W, Ge JJ, Gu ZY, Li WJ, Chen X, Zang Y, Yang YL, J. Appl. Polym. Sci., 74(10), 2546 (1999)
  7. Zhang N, Zeng C, Wang L, Ren J, J. Polym. Environ., 21, 286 (2013)
  8. Pilla S, Kim SG, Auer GK, Gong SQ, Park CB, Polym. Eng. Sci., 49(8), 1653 (2009)
  9. Zhou ZF, Huang GQ, Xu WB, Ren FM, Express Polym. Lett., 11, 734 (2007)
  10. Dean KM, Petinakis E, Meure S, Yu L, Chryss A, J. Polym. Environ., 20, 741 (2012)
  11. Corre YM, Duchet J, Reignier J, Maazouz A, Reol. Acta, 50, 613 (2011)
  12. Zhou M, Zhou P, Xiong P, Qian X, Zheng H, Macromol. Res., 23(3), 231 (2015)
  13. Mihai M, Huneault MA, Favis BD, Polym. Eng. Sci., 50(3), 629 (2010)
  14. Liang SJ, Den JP, Yang WT, Chin. J. Polym. Sci., 28, 323 (2010)
  15. Sattarzadeh S, Golipour H, Der Pharma Chemica, 4, 2340 (2012)
  16. Li HB, Huneault MA, J. Appl. Polym. Sci., 122(1), 134 (2011)
  17. Mezger TG, The Rheology Handbook: For Users of Rotational and Oscillatory Rheometers, 2nd ed., VINCENTZ, Irnhagen, 2006.
  18. Spitael P, Macosko CW, Polym. Eng. Sci., 44(11), 2090 (2004)