Journal of Polymer Science Part A: Polymer Chemistry, Vol.35, No.8, 1543-1548, 1997
Ligated Anionic Block Copolymerization of Methyl-Methacrylate with N-Butyl Acrylate and N-Nonyl Acrylate as Promoted by Lithium 2-(2-Methoxyethoxy) Ethoxide Diphenylmethyllithium
Poly(methyl methacrylate-b-n-butyl acrylate) (PMMA-b-Pn-BuA) and poly(methyl methacrylate-b-n-nonyl acrylate) (PMMA-b-Pn-NonA) diblock copolymers have been successfully synthesized by the sequential anionic polymerization of methyl methacrylate (MMA) and the n-alkyl acrylate (n-BuA or n-NonA), in a 90/10 toluene/tetrahydrofuran (THF) mixture at -78 degrees C. When diphenylmethyllithium (DPMLi) ligated with lithium 2-(2-methoxyethoxy) ethoxide (LiOEEM) is used as the initiator, the polymerization of each block appears to be living. Molecular weight and composition of block copolymers can be predicted from the monomer over initiator molar ratio and the molecular weight distribution is narrow. Size exclusion chromatography (SEC) supports that no homo-PMMA contaminates the final copolymer. Although the reverse polymerization sequence Pn-NonA-b-PMMA always results in some contamination by homo-Pn-NonA, it has no really significant effect on the final product characteristics.