화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.4, 382-387, August, 2018
Pd-Ni-YSZ 촉매를 이용한 수증기-이산화탄소 복합개질 반응 특성
Reaction Characteristics of Combined Steam and Carbon Dioxide Reforming of Methane Reaction Using Pd-Ni-YSZ Catalyst
E-mail:
초록
본 연구에서는 Pd-Ni-YSZ 촉매의 형태 및 공급되는 가스 조성에 따른 수증기-이산화탄소 복합개질 반응 특성을 평가 하였다. 촉매는 분말 형태와 다공성 디스크 형태로 제조되었으며 주입 가스는 CH4/CO2/H2O ratio를 각각 다르게 하여 공급하였다. 그 결과 분말 형태의 촉매와 비교하여 다공성 디스크 형태 촉매를 사용하였을 때 CH4와 CO2 전환율이 전반적으로 향상되었으며, 공급가스의 CH4/CO2/H2O ratio를 1 : 0.5 : 0.5로 하였을 때 H2/CO ratio가 2에 가깝게 조절되었다. 하지만 탄소침적에 의해 반응 시작 6 h 이후 CH4 전환율이 일부 감소하였으며 압력 강하가 0.1에서 0.8로 증가하였다. 이를 해결하기 위하여 공급되는 가스의 CH4/CO2/H2O ratio를 조절하여 수분 비율을 최적화한 결과, 1 : 0.5 : 1의 비율로 가스를 공급할 경우 탄소 침적 방지를 통한 내구성 확보가 가능하였으며 전환율 역시 비교적 높은 수준으로 유지됨을 확인하였다.
In this study, the reaction characteristics of combined steam and carbon dioxide reforming of methane (CSCRM) reaction using Pd-Ni-YSZ catalyst were investigated according to types of catalysts and gas compositions. Catalysts were prepared in the form of powder and porous disk. The injected gases were supplied at different ratios of CH4/CO2/H2O. As a result, the conversion of CH4 and CO2 was improved as a result of using the porous disc type catalyst as compared with that of the powder type catalyst. When the CH4/CO2/H2O ratio of the feed gas was 1 : 0.5 : 0.5, the H2/CO ratio was adjusted close to 2. However, after 6 hours of the reaction, CH4 conversion was partially reduced by the carbon deposition and the pressure drop increased from 0.1 to 0.8. This issue was then solved by optimizing the water content. As a result, it was confirmed that the durability was secured by preventing the carbon deposition when the gas was supplied at a CH4/CO2/H2O ratio of 1 : 0.5 : 1, and the conversion rate was maintained at a relatively high level.
  1. Chen L, Gangadharan P, Lou HH, Asia. Pac. J. Chem. Eng., 1, 1 (2018)
  2. Hallac BB, Keyvanloo K, Hedengren JD, Hecker WC, Argyle MD, Chem. Eng. J., 263, 268 (2015)
  3. Santilli DS, Castner DG, Energy Fuels, 3(1), 8 (1989)
  4. Freitas ACD, Guirardello R, Chem. Eng. Trans., 43, 1831 (2015)
  5. Sehested J, J. Catal., 217(2), 417 (2003)
  6. Arkatova LA, Catal. Today, 157(1-4), 170 (2010)
  7. MLECZKO L, BAERNS M, Fuel Process. Technol., 42(2-3), 217 (1995)
  8. Wang Y, Peng J, Zhou C, Lim ZY, Wu CZ, Ye S, Wang WG, Int. J. Hydrog. Energy, 39(2), 778 (2014)
  9. Majewski AJ, Wood J, Int. J. Hydrog. Energy, 39(24), 12578 (2014)
  10. Lee SH, Cho W, Ju WS, Cho BH, Lee YC, Baek YS, Catal. Today, 87(1-4), 133 (2003)
  11. Singha RK, Shukla A, Yadav A, Adak S, Iqbal Z, Siddiqui N, Bal R, Appl. Energy, 178, 110 (2016)
  12. Sun LZ, Tan YS, Zhang QD, XIE HJ, Han YZ, J. Fuel. Chem. Technol., 40, 831 (2012)
  13. Si LJ, Wang CZ, Sun NN, Wen X, Zhao N, Xiao FK, Wei W, Sun YH, J. Fuel. Chem. Technol., 40, 210 (2012)
  14. Garcia-Vargas JM, Valverde JL, Diez J, Sanchez P, Dorado F, Appl. Catal. B: Environ., 164, 316 (2015)
  15. Pino L, Vita A, Cipiti F, Lagana M, Recupero V, Appl. Catal. B: Environ., 104(1-2), 64 (2011)
  16. Kim SS, Lee HH, Hong SC, J. Nanosci. Nanotechnol., 12, 5564 (2014)
  17. Peters TA, Stange M, Klette H, Bredesen R, J. Membr. Sci., 316(1-2), 119 (2008)
  18. Tong JH, Matsumura Y, Suda H, Haraya K, Sep. Purif. Technol., 46(1-2), 1 (2005)
  19. Ryi SK, Park JS, Kim DK, Kim TH, Kim SH, J. Membr. Sci., 339(1-2), 189 (2009)
  20. Lee SM, Won JM, Kim GJ, Lee SH, Kim SS, Hong SC, Appl. Surf. Sci., 419, 788 (2017)
  21. Jang WJ, Seo YT, Roh HS, Koo KY, Seo DJ, Seo YS, Rhee YW, Yoon WL, The Korea Society for New and Renewable Energy Spring Conference, 53-56 (2007).