화학공학소재연구정보센터
Korea-Australia Rheology Journal, Vol.30, No.3, 169-178, August, 2018
Power series for shear stress of polymeric liquid in large-amplitude oscillatory shear flow
E-mail:
Exact solutions for shear stress in a polymeric liquid subjected to large-amplitude oscillatory shear flow (LAOS) contain many Bessel functions. For the simplest of these, for instance, the corotational Maxwell fluid, in the closed form for its exact solution, Bessel functions appear 42 times, each of which is inside a summation. Approximate analytical solutions for shear stress in LAOS often take the form of the first few terms of a power series in the shear rate amplitude, and without any Bessel functions at all. There is thus practical interest in extending the Goddard integral expansion (GIE), to an arbitrary number of terms. In continuum theory, these truncated series are arrived at laboriously using the GIE. However, each term in the GIE requires much more work than its predecessor. For the corotational Maxwell fluid, for instance, the GIE for the shear stress has yet to be taken beyond the sixth power of the shear rate amplitude. In this paper, we begin with the exact solution for shear stress responses in corotational Maxwell fluids, and then perform an expansion by symbolic computation to confirm up to the sixth power, and to then continue the GIE. In this paper for example, we continue the GIE to the 40th power of the shear rate amplitude. We use Ewoldt grids to show our main result to be highly accurate. We also show the radius of convergence of the GIE to be infinite.
  1. Abramowitz M, Stegun IA, Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical tables, 10th printing, National Bureau of Standards, Washington DC. 1972.
  2. Ad Hoc, J. Rheol. 57, 1047 2013.
  3. Bird RB, Giacomin AJ, Rheol. Acta, 51(6), 481 (2012)
  4. Bird RB, Armstrong RC, Hassager O, Dynamics of Polymeric Liquids, Vol. 1, 1st ed., Wiley, New York 1977.
  5. Bird RB, Stewart WE, Lightfoot EN, Transport Phenomena, Revised 2nd ed., Wiley & Sons, New York 2007.
  6. Bird RB, Stewart WE, Lightfoot EN, Klingenberg DJ, Introductory Transport Phenomena, Wiley & Sons, New York 2015.
  7. Bohme G, Stromungsmechanik nicht-Newtonscher Fluide, BG Teubner, Stuttgart 1981.
  8. Cho KS, Viscoelasticity of Polymers: Theory and Numerical Algorithms, Springer, Dordrecht 2016.
  9. Dealy JM, Petersen JF, Tee TT, Rheol. Acta, 12, 550 (1973)
  10. Ewoldt RH, Nonlinear Viscoelastic Materials: Bioinspired Applications and New Characterization Measures, Ph.D Thesis, Massachusetts Institute of Technology 2009.
  11. Ewoldt RH, Winter P, Maxey J, McKinley GH, Rheol. Acta, 49(2), 191 (2010)
  12. Gemant A, Naturwissenschaften, 23, 406 (1935)
  13. Gemant A, J. Chem. Soc.-Faraday Trans., 31, 1582 (1935)
  14. Giacomin AJ, Saengow C, Mod. Phys. Lett. B, 32, 184003 (2018)
  15. Giacomin AJ, Saengow C, Guay M, Kolitawong C, Rheol. Acta, 54(8), 679 (2015)
  16. Giacomin AJ, Dealy JM, Techniques in Rheological Measurement, Springer, Dordrecht, 99-121 1993.
  17. Giacomin AJ, Dealy JM, Rheological Measurement, 2nd ed., Springer, Dordrecht, 327-356 1998.
  18. Giacomin AJ, Bird RB, Aumnate C, Mertz AM, Schmalzer AM, Mix AW, Phys. Fluids, 24, 103101 (2012)
  19. Giacomin AJ, Bird RB, Baek HM, Ind. Eng. Chem. Res., 52(5), 2008 (2013)
  20. Giacomin AJ, Bird RB, Johnson LM, Mix AW, J. Non-Newton. Fluid Mech., 187, 48 (2012)
  21. Giacomin AJ, Bird RB, Johnson LM, Mix AW, J. Non-Newton. Fluid Mech., 166(19-20), 1081 (2011)
  22. Han CD, Rheology and Processing of Polymeric Materials: Volume I: Polymer Rheology, Oxford University Press, New York 2007.
  23. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697 (2011)
  24. Jbara LM, Giacomin AJ, Gilbert PH, J. Soc. Rheol. Jpn., 44, 289 (2016)
  25. Kovacic JJ, J. Symb. Comput., 2, 3 (1986)
  26. Larson RG, Constitutive Equations for Polymer Melts and Solutions, Buttersworths, Boston 1988.
  27. Oldroyd JG, Proc. R. Soc. A-Math. Phys. Eng. Sci., 245, 278 (1958)
  28. Poungthong P, Saengow C, Giacomin AJ, Kolitawong C, Merger D, Wilhelm M, Phys. Fluids, 30, 040910 (2018)
  29. Rogers SA, Rheol. Acta, 56(5), 501 (2017)
  30. Rudin W, Principles of Mathematical Analysis, Vol. 3, McGraw-hill, New York 1964.
  31. Saengow C, Polymer Process Partitioning: Extruding Plastic Pipe, Ph.D Thesis, Queen’s University 2016.
  32. Saengow C, Polymer Process Partitioning Approach: Plastic Pipe Extrusion, Ph.D Thesis, King Mongkut’s University of Technology North Bangkok 2016.
  33. Saengow C, Giacomin AJ, Phys. Fluids, 29, 121601 (2017)
  34. Saengow C, Giacomin AJ, Int. Polym. Process., 32(5), 648 (2017)
  35. Saengow C, Giacomin AJ, Phys. Fluids, 30, 030703 (2018)
  36. Saengow C, Giacomin AJ, Polymers Research Group Technical Report 40, Chemical engineering department, Queen's University, Kingston, 1-39 2018.
  37. Saengow C, Giacomin AJ, Kolitawong C, Macromol. Theory Simul., 24, 352 (392)
  38. Saengow C, Giacomin AJ, Kolitawong C, J. Non-Newton. Fluid Mech., 223, 176 (2015)
  39. Saengow C, Giacomin AJ, Kolitawong C, Phys. Fluids, 29, 043101 (2017)
  40. Saengow C, Giacomin AJ, Kolitawong C, J. Non-Newton. Fluid Mech., 242, 11 (2017)
  41. Saengow C, Giacomin AJ, Khalaf N, Guay M, J. Soc. Rheol. Jpn., 45, 251 (2017)
  42. Swokowski EW, Calculus with Analytic Geometry, Prindle, Weber & Schmidt, Massachusetts 1976.
  43. Tee TT, Large Amplitude Oscillatory Shearing of Polymer Melts, Ph.D Thesis, McGill University 1974.
  44. Tee TT, Dealy JM, J. Rheol., 19, 595 (1975)
  45. Torre OCDL, Ewoldt RH, Korea-Aust. Rheol. J., 30(1), 1 (2018)
  46. Wu Q, Wu J, Polymer Rheology, Higher Education Press, Beijing 2002.