화학공학소재연구정보센터
Macromolecular Research, Vol.26, No.11, 978-983, November, 2018
Theoretical Prediction of Heat Transport in Few-Layer Graphene/ Epoxy Composites
E-mail:
Graphene is widely employed to improve the overall thermal conductivity of polymer composites because of its remarkable thermal conductivity. However, the magnitude of its improvement of thermal conductivity is far below the values expected from the remarkably high thermal conductivity of graphene and is very much less than the production cost of graphene, greatly limiting its large-scale applications in the field of thermal management. Therefore, understanding heat transport behaviors within the polymer composites and studying the related influential factors are very important. Here, heat transport behaviors within few-layer graphene (FLG)/epoxy composites are studied using molecular dynamics (MD) simulations. The influences of interfacial thermal resistance, FLG volume fraction and FLG length on overall thermal conductivity of the composites are specifically analyzed, finding that there is a significant interfacial thermal resistance between FLG and epoxy because of the mismatch of the phonon vibration power spectrum (VPS). Furthermore, the interfacial thermal resistance, FLG volume fraction, and FLG length play important roles in improving the overall thermal conductivity of FLG/epoxy composites. Our findings provide a better understanding of the heat transport behaviors within polymer composites and should be useful for future development of various thermal management applications.
  1. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  2. Balandin AA, Nat. Mater., 10(8), 569 (2011)
  3. Seol JH, Jo I, Moore AL, Lindsay L, Aitken ZH, Pettes MT, Li XS, Yao Z, Huang R, Broido D, Mingo N, Ruoff RS, Shi L, Science, 328(5975), 213 (2010)
  4. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902 (2008)
  5. Yu AP, Ramesh P, Sun XB, Bekyarova E, Itkis ME, Haddon RC, Adv. Mater., 20(24), 4740 (2008)
  6. Shahil KMF, Balandin AA, Nano Lett., 12, 861 (2012)
  7. Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ, Kong BS, Paik KW, Jeon S, Adv. Mater., 25(5), 732 (2013)
  8. Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X, Chen M, Liu C, Liao S, Gong Y, Mishra AK, Liu L, Chem. Mater., 26, 4459 (2014)
  9. Mittal G, Dhand V, Rhee KY, Park SJ, Lee WR, J. Ind. Eng. Chem., 21, 11 (2015)
  10. Shen X, Wang Z, Wu Y, Liu X, He Y, Kim J, Nano Lett., 6, 3585 (2016)
  11. Zhang P, Zeng J, Zhai S, Xian Y, Yang D, Li Q, Macromol. Mater. Eng., 302, 170006 (2017)
  12. Luo TF, Lloyd JR, Adv. Funct. Mater., 22(12), 2495 (2012)
  13. Wang Y, Zhan HF, Xiang Y, Yang C, Wang CM, Zhang YY, J. Phys. Chem. C, 119, 12731 (2015)
  14. Wang MC, Hu N, Zhou LM, Yan C, Carbon, 85, 414 (2015)
  15. Wang Y, Yang CH, Mai YW, Zhang YY, Carbon, 102, 311 (2016)
  16. Wang Y, Yang C, Pei Q, Zhang Y, ACS Appl. Mater. Interfaces, 8, 8272 (2016)
  17. Huang X, Zhi C, Jiang P, J. Phys. Chem. C, 116, 23812 (2012)
  18. Cui X, Ding P, Zhuang N, Shi L, Song N, Tang S, ACS Appl. Mater. Interfaces, 7, 19068 (2015)
  19. Sun Y, Tang B, Huang W, Wang S, Wang Z, Wang X, Zhu Y, Tao C, Appl. Therm. Eng., 103, 892 (2016)
  20. Zhao Y, Zhang Y, Wu Z, Bai S, Compos Part B: Eng., 84, 52 (2016)
  21. Wang Y, Yang C, Cheng Y, Zhang Y, RSC Adv., 5, 82638 (2015)
  22. Chou F, Lukes J, Liang X, Takahashi K, Tien C, Annu. Rev. Heat Transfer, 10, 141 (1999)
  23. Xian Y, Zhai S, Yuan P, Zhang P, Yang D, Appl. Therm. Eng., 130, 1530 (2017)
  24. Konatham D, Papavassiliou DV, Striolo A, Chem. Phys. Lett., 527, 47 (2012)
  25. Zhong W, Zhang M, Ai B, Zheng D, Appl. Phys. Lett., 98, 113107 (2011)
  26. Shen X, Wang Z, Wu Y, Liu X, Kim J, Carbon, 108, 412 (2016)
  27. Mullerplathe F, J. Chem. Phys., 106(14), 6082 (1997)
  28. Sun H, J. Phys. Chem. B, 102(38), 7338 (1998)
  29. O'Brien PJ, Shenogin S, Liu JX, Chow PK, Laurencin D, Mutin PH, Yamaguchi M, Keblinski P, Ramanath G, Nat. Mater., 12(2), 118 (2013)
  30. Ju SP, Haung TJ, Liao CH, Chang JW, Polymer, 54(17), 4702 (2013)
  31. Harb M, Schmising CVK, Enquist H, Jurgilaitis A, Maximov I, Shvets PV, Obraztsov AN, Khakhulin D, Wulff M, Larsson J, Appl. Phys. Lett., 101, 233108 (2012)
  32. Pollack GL, Rev. Mod. Phys., 41, 48 (1969)
  33. Swartz ET, Pohl RO, Appl. Phys. Lett., 51, 2200 (1987)
  34. Swartz ET, Pohl RO, Rev. Mod. Phys., 61, 605 (1989)
  35. Stevens RJ, Norris PM, Zhigilei LV, in Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, CA, p37 2004.
  36. Landry ES, Mcgaughey AJH, Phys. Rev. B Condens. Matter., 80, 1 (2009)
  37. Zhang P, Yuan P, Jiang X, Zhai S, Zeng J, Xian Y, Qin H, Yang D, Small, 14, 170276 (2018)
  38. Luo T, Lloyd JR, Int. J. Heat Mass Transfer, 53, 1 (2010)
  39. Luo T, Lloyd JR, J. Appl. Phys., 109, 034301 (2011)
  40. Nan C, Birringer R, Clarke DR, Gleiter H, J. Appl. Phys., 81, 6692 (1997)
  41. Zhai SP, Zhang P, Xian YQ, Zeng JH, Shi B, Int. J. Heat Mass Transf., 117, 358 (2018)
  42. Chu K, Li W, Dong H, Appl. Phys. A-Mater. Sci. Process., 111, 221 (2013)