화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.68, 325-334, December, 2018
Ru?NiOx nanohybrids on TiO2 support prepared by impregnation-reduction method for efficient hydrogenation of lactose to lactitol
E-mail:
Lactose is a reducing disaccharide consisting of two different monosaccharides such as galactose and glucose. The hydrogenation of lactose to lactitol is a formidable challenge because it is a complex process and several side products are formed. In this work, we synthesized Ru?Ni bimetallic nanohybrids as efficient catalysts for selective lactose hydrogenation to give selective lactitol. Ru-Ni bimetallic nanohybrids with Ru-NiOx (x = 1, 5, and 10 wt%) are prepared by impregnating Ru and Ni salts precursors with TiO2 used as support material. Ru-Ni bimetallic nanohybrids (represented as 5Ru-5NiO/TiO2) catalyst is found to exhibit the remarkably high selectivity of lactitol (99.4%) and turnover frequency i.e. (374 h-1). In contrast, monometallic Ru/TiO2 catalyst shows poor performance with (TOF = 251 h-1). The detailed characterizations confirmed a strong interaction between Ru and NiO species, demonstrating a synergistic effect on the improvement on lactitol selectivity. The impregnation-reduction method for the preparation of bimetallic Ru-NiO/TiO2 catalyst promoted Ru nanoparticles dispersed on NiO and intensified the interaction between Ru and NiO species. Ru-NiO/TiO2 efficiently catalyzed the hydrogenation of lactose to lactitol with high yield/selectivity at almost complete conversion of lactose at 120 °C and 55 bar of hydrogen (H2) pressure. Moreover, Ru-NiO/TiO2 catalyst could also be easily recovered and reused up to four runs without notable change in original activity.
  1. Gallezot P, Cerino PJ, Blanc B, Fleche G, Fuertes P, J. Catal., 146(1), 93 (1994)
  2. Hernandez-Mejia C, Gnanakumar ES, Olivos-Suarez A, Gascon J, Greer HF, Zhou W, Rothenberg G, Shiju NR, Catal. Sci. Technol., 6, 577 (2016)
  3. Kusserow B, Schimpf S, Claus P, Adv. Synth. Catal., 345, 289 (2003)
  4. van Gorp K, Boerman E, Cavenaghi CV, Berben PH, Catal. Today, 52(2-3), 349 (1999)
  5. Wisniak J, Hershkowitz M, Leibowitz R, Stein S, Product R&D, 13, 75 (1974)
  6. Kobayashi H, Matsuhashi H, Komanoya T, Hara K, Fukuoka A, Chem. Commun., 47, 2366 (2011)
  7. Murzin DY, Duque A, Arve K, Sifontes V, Aho A, Eranen K, Salmi T, Chapter 3 Catalytic Hydrogenation of Sugars, The Royal Society of Chemistry, p.89 2016.
  8. Tathod AP, Dhepe PL, Green Chem., 16, 4944 (2014)
  9. de Arruda PV, dos Santos JC, de Cassia Lacerda Brambilla Rodrigues R, Da Silva DDV, Yamakawa CK, de Moraes Rocha GJ, Junior JN, da Cruz Pradella JG, Rossell CEV, das Gracas de Almeida Felipe M, J. Ind. Eng. Chem., 47, 297 (2017)
  10. Eo YS, Rhee HW, Shin S, J. Ind. Eng. Chem., 37, 42 (2016)
  11. Dabbawala A, Park JJ, Valekar AH, Mishra DK, Hwang JS, Catal. Commun., 69, 207 (2015)
  12. Dabbawala AA, Mishra DK, Huber GW, Hwang JS, Appl. Catal. A: Gen., 492, 252 (2015)
  13. Cui C, Zhang Z, Zeng Q, Chen B, RSC Adv., 6, 108180 (2016)
  14. Dussenne C, Delaunay T, Wiatz V, Wyart H, Suisse I, Sauthier M, Green Chem., 19, 5332 (2017)
  15. Mishra DK, Lee JM, Chang JS, Hwang JS, Catal. Today, 185(1), 104 (2012)
  16. Yadav M, Mishra DK, Hwang JS, Appl. Catal. A: Gen., 425-426, 110 (2012)
  17. Mishra DK, Dabbawala AA, Hwang JS, J. Mol. Catal. A-Chem., 376, 63 (2013)
  18. Mishra DK, Dabbawala AA, Hwang JS, Catal. Commun., 41, 52 (2013)
  19. Zhang X, Durndell LJ, Isaacs MA, Parlett CMA, Lee AF, Wilson K, ACS Catal., 6, 7409 (2016)
  20. Kuusisto J, Mikkola JP, Casal PP, Karhu H, Varyrynen J, Salmi T, Chem. Eng. J., 115(1-2), 93 (2005)
  21. Zacharis C, Lactitol, Wiley-Blackwell, p.275 2012.
  22. Young H, Lactitol, Blackwell Publishing Ltd., p.205 2007.
  23. Kuusisto J, Mikkola JP, Sparv M, Warna J, Heikkila H, Perala R, Vayrynen J, Salmi T, Ind. Eng. Chem. Res., 45(17), 5900 (2006)
  24. Kuusisto J, Mikkola JP, Sparv M, Warna J, Karhu H, Salmi T, Chem. Eng. J., 139(1), 69 (2008)
  25. Blankers IH, Evers I, Putker JJM, Terlouw B, Liquid, transparent mixture based on lactitol, U.S. Patents, 6444250 (2002).
  26. Drakoularakou A, Hasselwander O, Edinburgh M, Ouwehand AC, Food Sci. Technol. Bull. Funct. Foods, 3, 73 (2007)
  27. Kim YD, Park TE, Singh B, Cho KS, Sangshetti JN, Choi YJ, Arote RB, Cho CS, J. Mater. Chem. B, 4, 2208 (2016)
  28. Han JH, Krochta JM, Kurth MJ, Hsieh YL, J. Agric. Food Chem., 48, 5278 (2000)
  29. Hellrup J, Holmboe M, Nartowski KP, Khimyak YZ, Mahlin D, Langmuir, 32(49), 13214 (2016)
  30. Zaccheria F, Mariani M, Scotti N, Psaro R, Ravasio N, Green Chem., 19, 1904 (2017)
  31. Jawad R, Drake AF, Elleman C, Martin GP, Warren FJ, Perston BB, Ellis PR, Hassoun MA, Royall PG, Mol. Pharm., 11, 2224 (2014)
  32. Lindsay MJ, Walker TW, Dumesic JA, Rankin SA, Huber GW, Green Chem., 20, 1824 (2018)
  33. Fox PF, Advanced Dairy Chemistry Volume 3: Lactose, Water, Salts and Vitamins, Springer, US, 2013.
  34. Westhoff GM, Kuster BFM, Heslinga MC, Pluim H, Verhage M, Lactose and Derivatives, Wiley-VCH Verlag GmbH & Co KGaA, 2000.
  35. Hendriks HEJ, Kuster BFM, Marin GB, Carbohydr. Res., 204, 121 (1990)
  36. Abbadi A, Gotlieb KF, Meiberg JB, Vanbekkum H, Appl. Catal. A: Gen., 156(1), 105 (1997)
  37. Doluda VY, Warna J, Aho A, Bykov AV, Sidorov AI, Sulman EM, Bronstein LM, Salmi T, Murzin DY, Ind. Eng. Chem. Res., 52(39), 14066 (2013)
  38. Wu Z, Wang Y, Sun L, Mao Y, Wang M, Lin C, J. Mater. Chem. A, 2, 8223 (2014)
  39. Sreethawong T, Suzuki Y, Yoshikawa S, Int. J. Hydrog. Energy, 30(10), 1053 (2005)
  40. Choi SH, Lee JH, Kang YC, Nanoscale, 5, 12645 (2013)
  41. Kumar A, Sanger A, Kumar A, Chandra R, RSC Adv., 6, 77636 (2016)
  42. Jin Q, Ikeda T, Fujishima M, Tada H, Chem. Commun., 47, 8814 (2011)
  43. Ibupoto ZH, Abbasi MA, Liu X, AlSalhi MS, Willander M, J. Nanomater., 2014, 6 (2014)
  44. Chen SF, Zhang SJ, Liu W, Zhao W, J. Hazard. Mater., 155(1-2), 320 (2008)
  45. Pichaikaran S, Arumugam P, Green Chem., 18, 2888 (2016)
  46. Elmasides C, Kondarides DI, Grunert W, Verykios XE, J. Phys. Chem. B, 103, 5227 (1999)
  47. Larichev YV, Moroz BL, Zaikovskii VI, Yunusov SM, Kalyuzhnaya ES, Shur VB, Bukhtiyarov VI, J. Phys. Chem. C, 111, 9427 (2007)
  48. Zhou S, Yin H, Schwartz V, Wu Z, Mullins D, Eichhorn B, Overbury SH, Dai S, ChemphysChem, 9, 2475 (2008)
  49. Mori K, Miyawaki K, Yamashita H, ACS Catal., 6, 3128 (2016)
  50. Zahmakran M, Ozkar S, J. Mater. Chem., 19, 7112 (2009)
  51. Harmer MA, Fan A, Liauw A, Kumar RK, Chem. Commun., 610 (2009).
  52. Ramirez-Lopez CA, Ochoa-Gomez JR, Gil-Rio S, Gomez-Jimenez-Aberasturi O, Torrecilla-Soria J, J. Chem. Technol. Biotechnol., 86(6), 867 (2011)