Applied Chemistry for Engineering, Vol.29, No.6, 670-676, December, 2018
붕소 화합물로 처리된 편백목재의 연소시험에 의한 연기발생
Smoke Generation by Burning Test of Cypress Plates Treated with Boron Compounds
E-mail:
초록
붕산, 5붕산암모늄, 붕산/5붕산암모늄 첨가제로 처리한 편백목재 시험편의 연소가스 발생에 관한 시험을 하였다. 15wt%의 붕소 화합물 수용액으로 각각 편백목재 시험편에 붓으로 3회 칠하였다. 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소가스를 분석하였다. 그 결과, 붕소화합물로 처리한 시험편의 연기성능지수(SPI)는 공시편 보다 1.37~2.68배 증가하였고, 연기성장지수(SGI)는 29.4~52.9% 감소하였다. 그리고 붕소화합물로 처리된 시험편의 연기강도(SI)는 공시편보다 1.16~3.92배 감소되어 연기 및 화재 위험성이 낮아지는 것으로 예상된다. 또한 붕소화합물로 처리한 시험편의 최대일산화탄소(COpeak) 농도는 공시편보다 12.7~30.9% 감소되었다. 그러나 미국직업안전위생관리국(OSHA) 허용기준(PEL)보다 1.52~1.92배 높은 치명적인 독성을 발생하는 것으로 측정되었다. 붕소화합물은 일산화탄소를 감소시키는 역할을 하였으나 편백목재 자체의 일산화탄소의 생성 농도가 높기 때문에 감소효과에 대한 기대에 미치지 못하였다.
Experiments on combustion gases generation of untreated cypress specimens or treated with boric acid, ammonium pentaborate, and boric acid/ammonium pentaborate additive were carried out. Test specimens were painted three times with 15 wt% boron compound aqueous solutions. After drying, the generation of combustion gas was analyzed using a cone calorimeter (ISO 5660-1). As a result, comparing to untreated specimen, the smoke performance index (SPI) of the specimens treated with the boron compound increased by 1.37 to 2.68 times and the smoke growth index (SGI) decreased by 29.4 to 52.9%. The smoke intensity (SI) of the specimens treated with boron compounds is expected to be 1.16 to 3.92 times lower than that of untreated specimens, resulting in lower smoke and fire hazards. Also, the maximum carbon monoxide (COpeak) concentration of specimens treated with boron compounds was 12.7 to 30.9% lower than that of untreated specimens. However, it was measured to produce fatal toxicities from 1.52 to 1.92 times higher than that of permissible exposure limits (PEL) by Occupational Safety and Health Administration (OSHA). The boron compounds played a role in reducing carbon monoxide, but it did not meet the expectation of reduction effect because of the high concentration of carbon monoxide in cypress itself.
Keywords:Boron compounds;Smoke performance index (SPI);Smoke growth index (SGI);Smoke intensity (SI);Carbon monoxide
- Bektha P, Neimz P, Holzforschung, 57, 539 (2003)
- Zhao P, Guo C, Li L, Constr. Build. Mater., 170, 193 (2018)
- Jiang J, Li JZ, Hu J, Fan D, Constr. Build. Mater., 24, 2633 (2010)
- Jiang T, Feng X, Wang Q, Xiao Z, Wang F, Xie Y, Constr. Build. Mater., 72, 1 (2014)
- Pereyra AM, Giudic CA, Fire Saf. J., 44, 497 (2009)
- White RH, Dietenberger MA, Wood Handbook: Wood as an Engineering Material, Ch. 18, USDA Forest Service, WI, USA (2010).
- Purser DA, The SFPE Handbook of Fire Protection Engineering (3rd ed.), pp. 83-171, National Fire Protection Association, MA, USA (2002).
- Ernst A, Zibrak JD, N. Engl. J. Med., 339, 1603 (1998)
- Von Burg R, J. Appl. Toxicol., 19, 379 (1999)
- Luft UC, Aviation Physiology: the Effects of Altitude in Handbook of Physiology, 1099-1145, American Physiology Society, Washington DC, USA (1965).
- Ikeda N, Takahashi H, Umetsu K, Suzuki T, Forensic Sci. Int., 41, 93 (1989)
- Purser DA, J. Fire Sci., 2, 20 (1984)
- Babrauskas V, New Technology to Reduce Fire Losses and Costs, pp. 78-87, Elsevier Appied Science Publisher, London, UK (1986).
- Hirschler MM, ACS Symp. Ser., 797, 293 (2001)
- Lee CH, Lee CW, Kim JW, Suh CK, Kim KM, Korean Patent 2011-0034978 (2011).
- Jin E, Chung YJ, Fire Sci. Eng., 32(3), 19 (2018)
- ISO 5660-1, Reaction-to-fire tests-heat release, smoke production and mass loss rate-Part 1 Genever, Switzerland (2015).
- Bergman R, Wood Handbook-Wood as an Engineering Material, Ch. 13, USDA Forest Service, WI, USA (2010).
- Babrauskas V, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, MA, USA (2008).
- Balakrishnan T, Bhagannaryana G, Ramamurthi K, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 71, 578 (2008)
- Grexa O, Horvathova E, Besinova O, Lehocky P, Polym. Degrad. Stabil., 64, 529 (1999)
- Wang Q, Li J, Winady JE, Wood Sci. Technol., 38, 375 (2004)
- Hagen M, Hereid J, Delichtsios MA, Zhang J, Bakirtzis D, Fire Saf. J., 44, 1053 (2009)
- Wang B, Tang Q, Hong N, Song L, Wang L, Shi Y, Hu Y, ACS Appl. Mater. Interfaces, 3, 3754 (2011)
- Jiao C, Chen X, Zhang J, J. Fire Sci., 27, 465 (2009)
- Liu L, Hu J, Zhuo J, Jiao C, Chen X, Li S, Polym. Degrad. Stabil., 104, 87 (2014)
- Mourituz AP, Mathys Z, Gibson AG, Composites A, 38, 1040 (2005)
- OHSA, Carbon Monoxide, OSHA fact sheet, United States National Institute for Occupational Safety and Health, September 14, USA (2009).
- OHSA, Carbon Dioxide, Toxicological review of selected chemicals, final rule on air comments project, OHSA’s Comments, Jannuary 19, USA (1989).
- MSHA, Carbon Monoxide, MSHA’s occupational illness and injury prevention program topic, U.S. Department of Labor, USA (2015).
- Spearpoint MJ, Quintiere JG, Combust. Flame, 123(3), 308 (2000)