Applied Chemistry for Engineering, Vol.29, No.6, 734-739, December, 2018
PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상
Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA
E-mail:
초록
PVA를 PEDOT : PSS에 첨가해줌으로써 CVD 그래핀 상에 효과적으로 코팅할 수 있었다. PVA의 검화도 및 분자량에 따른 코팅성 및 필름의 전기적 특성을 검토한 결과, DS는 89%, 분자량은 100,000 gmol-1 이하인 것이 바람직하였다. 또한, PVA의 첨가량은 PEDOT : PSS의 고형분 대비 5%가 최적으로 나타났다. 이와 같은 PVA를 사용하여 PEDOT : PSS를 CVD 그래핀 위에 코팅한 필름은 CVD 그래핀 필름에 비해서 표면조도, 부착성, 굴곡 내구성 및 고온(160 ℃)에서의 저항 안정성 등이 현저하게 개선되는 것으로 나타났다.
We successfully coated poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) on CVD graphene by adding poly(vinyl alcohol) (PVA) to PEDOT : PSS. Extensive studies on the wettability of coating solutions and electrical properties of formed films led us to conclude that PVA with 89% of the degree of saponification and the molecular weight of less than 100,000 gmol-1 produced optimum results. Furthermore, the optimum content of PVA was found to be 5% of PEDOT : PSS by the solid weight. The film coated by PEDOT : PSS with PVA on CVD graphene displayed a conspicuous improvement in the surface roughness, adhesive property, bending durability and stability in resistance at 160 ℃, compared to those of using CVD graphene films.
- Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
- Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK, Science, 320, 1308 (2008)
- Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
- Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
- Ferrer PR, Mace A, Thomas SN, Jeon JW, Nano Converg., 4, 29 (2017)
- Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S, Nature, 446, 60 (2007)
- Geim AK, Science, 324, 11530 (2007)
- Kang J, Shin D, Bae S, Hong BH, Nanoscale, 4, 5527 (2012)
- Yoon T, Shin WC, Kim TY, Mun JH, Kim TS, Cho BJ, Nano Lett., 12, 1448 (2012)
- Yang J, Liu PB, Wei XZ, Luo W, Yang J, Jiang H, Wei D, Shi R, Shi H, ACS Appl. Mater. Interfaces, 9, 36017 (2017)
- Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12(7), 481 (2000)
- Park H, Rowehl JA, Kim KK, Bulovic V, Kong J, Nanotechnology, 21, 505204 (2010)
- Park H, Shi YM, Kong J, Nanoscale, 5, 8934 (2013)
- Kim H, Bae SH, Han TH, Lim KG, Ahn JH, Lee TW, Nanotechnology, 25, 014012 (2014)
- Chen M, Duan S, Zhang L, Wang Z, Li C, Chem. Commun., 51, 3169 (2015)
- Mamada K, Kosukegawa H, Fridrici V, Kapsa P, Ohta M, Tribol. Int., 44, 757 (2011)
- Kim SJ, Ryu J, Son S, Yoo JM, Park JB, Won D, Lee EK, Cho SP, Bae S, Cho S, Hong BH, Chem. Mater., 26, 2332 (2014)
- Vayeda R, Wang J, Elesiver, 27, 480 (2007)
- Phuchaduek W, Jamnongkan T, Rattanasak U, Boonsang S, Kaewpirom S, J. Appl. Polym. Sci., 132, 42234 (2015)
- Biswas SC, Dubreil L, Marion D, J. Colloid Interface Sci., 244(2), 245 (2001)
- Krebs FC, Org. Electron., 10, 761 (2009)
- Park SG, Na JJ, Lee JS, Osteryoung RA, J. Ind. Eng. Chem., 2(2), 181 (1996)
- Arco RGD, Zhang Y, Schlenker W, Ryu K, Thompson ME, Zhou C, ACS Nano, 4, 2865 (2010)
- Suk JW, Kitt A, Magnuson CW, Hao Y, Ahamed S, An J, Swan AK, Goldberg BB, Ruoff RS, ACS Nano, 9, 6916 (2011)
- Wood JD, Doidge GP, Carrion EA, Koepke JC, Kaitz JA, et al., Nanotechnology, 26, 055302 (2015)
- Hopkins AR, Reynolds JR, Macromolecules, 33(14), 5221 (2000)
- Zhang Y, Zhang L, Zhou C, Accounts Chem. Res., 46, 2329 (2013)
- Chen CH, Larue JC, Nelson RD, Kulinsky L, Madou MJ, J. Appl. Polym. Sci., 125(4), 3134 (2012)
- Kim HH, Yang JW, Jo SB, Kang B, Lee SK, Bong H, Lee G, Kim KS, Cho K, ACS Nano, 7, 1155 (2013)
- Xiong Z, Liu C, Org. Electron., 13, 1532 (2012)