화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.29, No.6, 734-739, December, 2018
PVA의 첨가에 의한 CVD 그래핀상 PEDOT : PSS의 코팅성 향상
Improved Coating of PEDOT : PSS onto CVD Graphene by the Addition of PVA
E-mail:
초록
PVA를 PEDOT : PSS에 첨가해줌으로써 CVD 그래핀 상에 효과적으로 코팅할 수 있었다. PVA의 검화도 및 분자량에 따른 코팅성 및 필름의 전기적 특성을 검토한 결과, DS는 89%, 분자량은 100,000 gmol-1 이하인 것이 바람직하였다. 또한, PVA의 첨가량은 PEDOT : PSS의 고형분 대비 5%가 최적으로 나타났다. 이와 같은 PVA를 사용하여 PEDOT : PSS를 CVD 그래핀 위에 코팅한 필름은 CVD 그래핀 필름에 비해서 표면조도, 부착성, 굴곡 내구성 및 고온(160 ℃)에서의 저항 안정성 등이 현저하게 개선되는 것으로 나타났다.
We successfully coated poly(3,4-ethylenedioxythiophene) : poly(styrene sulfonate) (PEDOT : PSS) on CVD graphene by adding poly(vinyl alcohol) (PVA) to PEDOT : PSS. Extensive studies on the wettability of coating solutions and electrical properties of formed films led us to conclude that PVA with 89% of the degree of saponification and the molecular weight of less than 100,000 gmol-1 produced optimum results. Furthermore, the optimum content of PVA was found to be 5% of PEDOT : PSS by the solid weight. The film coated by PEDOT : PSS with PVA on CVD graphene displayed a conspicuous improvement in the surface roughness, adhesive property, bending durability and stability in resistance at 160 ℃, compared to those of using CVD graphene films.
  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA, Science, 306, 666 (2004)
  2. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NM, Geim AK, Science, 320, 1308 (2008)
  3. Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385 (2008)
  4. Allen MJ, Tung VC, Kaner RB, Chem. Rev., 110(1), 132 (2010)
  5. Ferrer PR, Mace A, Thomas SN, Jeon JW, Nano Converg., 4, 29 (2017)
  6. Meyer JC, Geim AK, Katsnelson MI, Novoselov KS, Booth TJ, Roth S, Nature, 446, 60 (2007)
  7. Geim AK, Science, 324, 11530 (2007)
  8. Kang J, Shin D, Bae S, Hong BH, Nanoscale, 4, 5527 (2012)
  9. Yoon T, Shin WC, Kim TY, Mun JH, Kim TS, Cho BJ, Nano Lett., 12, 1448 (2012)
  10. Yang J, Liu PB, Wei XZ, Luo W, Yang J, Jiang H, Wei D, Shi R, Shi H, ACS Appl. Mater. Interfaces, 9, 36017 (2017)
  11. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12(7), 481 (2000)
  12. Park H, Rowehl JA, Kim KK, Bulovic V, Kong J, Nanotechnology, 21, 505204 (2010)
  13. Park H, Shi YM, Kong J, Nanoscale, 5, 8934 (2013)
  14. Kim H, Bae SH, Han TH, Lim KG, Ahn JH, Lee TW, Nanotechnology, 25, 014012 (2014)
  15. Chen M, Duan S, Zhang L, Wang Z, Li C, Chem. Commun., 51, 3169 (2015)
  16. Mamada K, Kosukegawa H, Fridrici V, Kapsa P, Ohta M, Tribol. Int., 44, 757 (2011)
  17. Kim SJ, Ryu J, Son S, Yoo JM, Park JB, Won D, Lee EK, Cho SP, Bae S, Cho S, Hong BH, Chem. Mater., 26, 2332 (2014)
  18. Vayeda R, Wang J, Elesiver, 27, 480 (2007)
  19. Phuchaduek W, Jamnongkan T, Rattanasak U, Boonsang S, Kaewpirom S, J. Appl. Polym. Sci., 132, 42234 (2015)
  20. Biswas SC, Dubreil L, Marion D, J. Colloid Interface Sci., 244(2), 245 (2001)
  21. Krebs FC, Org. Electron., 10, 761 (2009)
  22. Park SG, Na JJ, Lee JS, Osteryoung RA, J. Ind. Eng. Chem., 2(2), 181 (1996)
  23. Arco RGD, Zhang Y, Schlenker W, Ryu K, Thompson ME, Zhou C, ACS Nano, 4, 2865 (2010)
  24. Suk JW, Kitt A, Magnuson CW, Hao Y, Ahamed S, An J, Swan AK, Goldberg BB, Ruoff RS, ACS Nano, 9, 6916 (2011)
  25. Wood JD, Doidge GP, Carrion EA, Koepke JC, Kaitz JA, et al., Nanotechnology, 26, 055302 (2015)
  26. Hopkins AR, Reynolds JR, Macromolecules, 33(14), 5221 (2000)
  27. Zhang Y, Zhang L, Zhou C, Accounts Chem. Res., 46, 2329 (2013)
  28. Chen CH, Larue JC, Nelson RD, Kulinsky L, Madou MJ, J. Appl. Polym. Sci., 125(4), 3134 (2012)
  29. Kim HH, Yang JW, Jo SB, Kang B, Lee SK, Bong H, Lee G, Kim KS, Cho K, ACS Nano, 7, 1155 (2013)
  30. Xiong Z, Liu C, Org. Electron., 13, 1532 (2012)