화학공학소재연구정보센터
Langmuir, Vol.35, No.2, 342-358, 2019
Supramolecular Self-Assembly of Perylene Bisimide Derivatives Assisted by Various Groups
Anthra [2,1,9-def: 6,5,10-d'e'f']diisoquinoline-1,3,8,10 (2H,9H)-tetraone, namely, perylene bisimides (PBIs), belong to n-type organic semiconductors and possess potential applications in optoelectronic devices. The properties/performance of fabricated nanostructures/devices could be greatly influenced by both molecular structures of PBI building blocks and corresponding arrangement in assembled nanostructures. Many efforts have been made to modify the PBI core and then investigate the nanostructures and properties. However, it is still a great challenge to comprehensively understand the influence of molecular structures on the intermolecular interactions, the self-assembled structures, and the resulting performance. In the present contribution, we mainly summarize recent research aspects on supramolecular assembly behaviors of PBI derivatives assisted by various functional groups. First, a short introduction is given about basic molecular structure, properties, and self-assembly of PBI derivatives. Then, we mainly discuss the modulation of self-assembly of PBIs via introducing various functional groups (flexible or nonflexible chains, and biomolecules especially amino-acid-based groups). After that, the assembly of PBI derivatives from out-of-equilibrium states is described. Finally, a perspective is provided on the design of novel PBI derivatives and the fabrication of unique nanostructures with superior properties.