화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.2, 178-185, April, 2019
결정화에 의한 4성분계 에너지 복합체 제조 및 열분해 특성
Preparation of Quaternary Energetic Composites by Crystallization and Their Thermal Decomposition Characteristics
E-mail:
초록
결정화/응집 공정을 이용하여 금속/금속산화물/분자화약/산화제로 구성된 구형 4성분계 복합체 3종을 제조하였다. 열중량 분석(TGA) 및 시차주사열량법(DSC)에 의한 열 특성 분석 결과 복합체를 이룬 분자화약의 분해 구간이 단축됨을 관찰하였고, ammonium perchlorate(AP) 분해 생성물인 HCl 및 ClO2에 의한 자가 촉매 반응에 의한 것으로 해석된다. 활성화 에너지 분석 결과 분자화약 분해 종료 구간에서 급격하게 활성화 에너지가 감소함을 확인할 수 있었으며, 이는 분자화약 분해 생성물 중 공통으로 발생하는 HNO2에 의한 것으로 판단된다. 본 연구에서 복합체 열분해 분석 결과로부터 Distributed Activation Energy Model (DAEM)에 의해 모사된 활성화 에너지가 model-fitting 분석법인 Kissinger-Akahira-Sunose와 Flynn-Wall-Ozawa model에 의한 모사치보다 정확도가 대단히 우수함을 알 수 있었다.
Three spherical quaternary composites composed of metal/metal oxide/high explosive/oxidizer were prepared by a crystallization/ agglomeration process. From the characteristics of composites by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), the shortening of the decomposition zone of high explosives in the quaternary composite was observed, which may be attributed to the autocatalytic reaction caused by ClO2 or HCl which are ammonium perchlorate (AP) degradation products. The activation energy analysis showed that the activation energy abruptly decreases at the end of the decomposition zone of high explosives, and it was considered to be caused by HNO2 which is common in decomposition products of high explosives. The activation energy predicted from complex pyrolysis results by the distributed activation energy model (DAEM) showed much better in accuracy than those by model-fitting methods such as Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa models.
  1. Kishore K, Sunitha MR, AIAA Stud. J., 17, 1118 (1979)
  2. Kokobeinichev O, Anisiforov GI, Tereschenko AG, AIAA Stud. J., 13, 628 (1975)
  3. Lee JH, Shim HM, Kim JK, Kim HS, Koo KK, Appl. Chem. Eng., 28(2), 214 (2017)
  4. Zhao FQ, Chen P, Li SW, Thermochim. Acta, 416(1-2), 75 (2004)
  5. Florczak B, Cent. Eur. J. Energy Mater., 5, 65 (2008)
  6. Florczak B, Cudziło S, Proceedings of the 11th Seminar New Trends in Research of Energetic Materials, April 9-11, Pardubice, Czech (2008).
  7. Flynn JH, Wall LA, J. Polym. Sci. B: Polym. Phys., 4, 323 (1966)
  8. Coats AW, Redfern JP, Nature, 201, 68 (1964)
  9. Miura K, Maki T, Energy Fuels, 12(5), 864 (1998)
  10. Scott SA, Dennis JS, Davidson JF, Hayhurst AN, Chem. Eng. Sci., 61(8), 2339 (2006)
  11. Boldyrev VV, Thermochim. Acta, 443(1), 1 (2006)
  12. Jiao QJ, Zhu YL, Xing JC, Ren H, Huang H, J. Therm. Anal. Calorim., 116, 1125 (2014)
  13. Pivkina AN, Muravyev NV, Monogarov KA, Ostrovsky VG, Fomenkov IV, Milyokhin YM, Shishov NI, Chemical Rocket Propulsion: A Comprehensive Survey of Energetic Materials, 365-381, Springer, NY, USA (2017).
  14. Kay JJ, Biggs G, Hayden H, Babcock W, Interaction Between Ammonium Perchlorate and RDX, Livermore, CA, USA (2014).
  15. Xu H, Wang XB, Zhang LZ, Powder Technol., 185(2), 176 (2008)
  16. Vyazovkin S, Wight CA, Chem. Mater., 11, 3386 (1999)
  17. Chakraborty D, Muller RP, Dasgupta S, Goddard WA, J. Phys. Chem. A, 105(8), 1302 (2001)
  18. Gindulyte A, Massa L, Huang LL, Karle J, J. Phys. Chem. A, 103(50), 11045 (1999)
  19. Stenzel RW, A Method for the Preparation of Perchloric Acid, PhD Dissertation, California Institute of Technology, CA, USA (1921).
  20. Dusenbury JH, Powell RE, J. Am. Chem. Soc., 73, 3266 (1951)