화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.2, 190-197, April, 2019
활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구
Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon
E-mail:
초록
활성탄을 사용하여 수용액으로부터 메틸 그린 염료의 흡착에 대해 초기농도와 접촉시간 및 온도를 흡착변수로 사용하여 조사하였다. 흡착평형관계는 Freundlich 등온식에 잘 맞았다. 평가된 Freundlich 분리계수(1/n = 0.212~0.305)로부터 이 흡착공정이 효과적인 처리영역(0 < RL < 1)에 속하는 것을 알았다. BET식으로부터 얻은 등온포화용량은 온도가 증가할수록 커졌다. Dubinin-Radushkevich식으로 구한 흡착에너지값(E = 316.869~340.049 J/mol)으로부터 흡착공정이 물리흡착공정임을 알았다. 흡착속도실험결과는 유사 2차 반응속도식에 잘 맞는 것으로 나타났다. 자유에너지(-5.421~-7.889 kJ/mol)와 엔탈피(31.915 kJ/mol)는 흡착공정이 자발적이고 흡열반응으로 진행되었다고 알려주었다. 등량흡착열은 평형흡착량이 증가함에 따라 커졌으며, 표면 덮임이 증가됨에 따라 흡착제-흡착질의 총 상호작용도 증가하였다.
The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, (RL = 0.02~0.106), this process could be employed as the effective treatment (0 < RL < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.
  1. Malik PK, Saha SK, Sep. Purif. Technol., 31(3), 241 (2003)
  2. Rashed MN, M. N. Rashed (ed.), Organic Pollutants - Monitoring, Risk and Treatment, Chapter 7, 167-194, IntechOpen, London, UK (2013).
  3. Farghali AA, Bahgat M, Rouby WMAE, Khedr MH, J. Alloy. Compd., 555, 193 (2013)
  4. Sharma P, Saikia BK, Das MR, Colloids Surf. A: Physicochem. Eng. Asp., 457, 125 (2014)
  5. Reis LTD, Robaina NF, Pacheco WF, Cassella RJ, Chem. Eng. J., 53, 532 (2011)
  6. Bahgat M, Farghali AA, Rouby WE, Khedr M, Mohassab-Ahmed MY, Appl. Nanosci. Mater., 191, 251 (2013)
  7. Lee DC, Lee JJ, Appl. Chem. Eng., 27(6), 590 (2016)
  8. Porkodi K, Kumar KV, J. Hazard. Mater., 143(1-2), 311 (2007)
  9. Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
  10. Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almeida VC, Chem. Eng. J., 181-182, 243 (2012)
  11. Srihari V, Das A, Desalination, 225(1-3), 220 (2008)
  12. Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
  13. Lee JJ, Korean Chem. Eng. Res., 3(3), 309 (2015)
  14. Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
  15. Lee EH, Lee KY, Kim KW, Kim HJ, Kim IS, Chung DY, Moon JK, Choi JW, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223 (2016)
  16. Lee JJ, Appl. Chem. Eng., 25(6), 632 (2014)
  17. Srihari V, Das A, Desalination, 225(1-3), 220 (2008)
  18. Sivakumar P, Palanisamy PN, Int. J. ChemTech. Res., 1(3), 502 (2009)
  19. Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 87, 2590 (2007)
  20. Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)
  21. Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)
  22. Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)