Applied Chemistry for Engineering, Vol.30, No.2, 190-197, April, 2019
활성탄을 이용한 메틸 그린 흡착에 있어서 등온선, 동력학 및 열역학 파라미터에 대한 연구
Study on Isotherm, Kinetic and Thermodynamic Parameters for Adsorption of Methyl Green Using Activated Carbon
E-mail:
초록
활성탄을 사용하여 수용액으로부터 메틸 그린 염료의 흡착에 대해 초기농도와 접촉시간 및 온도를 흡착변수로 사용하여 조사하였다. 흡착평형관계는 Freundlich 등온식에 잘 맞았다. 평가된 Freundlich 분리계수(1/n = 0.212~0.305)로부터 이 흡착공정이 효과적인 처리영역(0 < RL < 1)에 속하는 것을 알았다. BET식으로부터 얻은 등온포화용량은 온도가 증가할수록 커졌다. Dubinin-Radushkevich식으로 구한 흡착에너지값(E = 316.869~340.049 J/mol)으로부터 흡착공정이 물리흡착공정임을 알았다. 흡착속도실험결과는 유사 2차 반응속도식에 잘 맞는 것으로 나타났다. 자유에너지(-5.421~-7.889 kJ/mol)와 엔탈피(31.915 kJ/mol)는 흡착공정이 자발적이고 흡열반응으로 진행되었다고 알려주었다. 등량흡착열은 평형흡착량이 증가함에 따라 커졌으며, 표면 덮임이 증가됨에 따라 흡착제-흡착질의 총 상호작용도 증가하였다.
The adsorption of methyl green dye using an activated carbon from an aqueous solution was investigated. Adsorption experiments were carried out as a function of the adsorbent dose, initial concentration, contact time and temperature. The Langmuir isotherm model showed a good fit to the equilibrium adsorption data. Based on the estimated Langmuir separation factor, (RL = 0.02~0.106), this process could be employed as the effective treatment (0 < RL < 1). It was found that the adsorption was a physical process with the adsorption energy (E) value range between 316.869 and 340.049 J/mol obtained using Dubinin-Radushkevich equation. The isothermal saturation capacity obtained from brunauer emmett teller (BET) model increased with increasing the temperature. The kinetics of adsorption followed a pseudo second order model. The free energy and enthalphy values of -5.421~-7.889 and 31.915 kJ/mol, respectively indicated that the adsorption process follows spontaneous endothermic reaction. The isosteric heat of adsorption increased with the increase of equilibrium adsorption amounts, and the total interaction of the adsorbent - adsorbate increased as the surface coverage increased.
- Malik PK, Saha SK, Sep. Purif. Technol., 31(3), 241 (2003)
- Rashed MN, M. N. Rashed (ed.), Organic Pollutants - Monitoring, Risk and Treatment, Chapter 7, 167-194, IntechOpen, London, UK (2013).
- Farghali AA, Bahgat M, Rouby WMAE, Khedr MH, J. Alloy. Compd., 555, 193 (2013)
- Sharma P, Saikia BK, Das MR, Colloids Surf. A: Physicochem. Eng. Asp., 457, 125 (2014)
- Reis LTD, Robaina NF, Pacheco WF, Cassella RJ, Chem. Eng. J., 53, 532 (2011)
- Bahgat M, Farghali AA, Rouby WE, Khedr M, Mohassab-Ahmed MY, Appl. Nanosci. Mater., 191, 251 (2013)
- Lee DC, Lee JJ, Appl. Chem. Eng., 27(6), 590 (2016)
- Porkodi K, Kumar KV, J. Hazard. Mater., 143(1-2), 311 (2007)
- Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)
- Vargas AMM, Cazetta AL, Martins AC, Moraes JCG, Garcia EE, Gauze GF, Costa WF, Almeida VC, Chem. Eng. J., 181-182, 243 (2012)
- Srihari V, Das A, Desalination, 225(1-3), 220 (2008)
- Foo KY, Hameed BH, Chem. Eng. J., 156(1), 2 (2010)
- Lee JJ, Korean Chem. Eng. Res., 3(3), 309 (2015)
- Jain M, Garg VK, Kadirvelu K, J. Hazard. Mater., 162(1), 365 (2009)
- Lee EH, Lee KY, Kim KW, Kim HJ, Kim IS, Chung DY, Moon JK, Choi JW, J. Nucl. Fuel Cycle Waste Technol., 14(3), 223 (2016)
- Lee JJ, Appl. Chem. Eng., 25(6), 632 (2014)
- Srihari V, Das A, Desalination, 225(1-3), 220 (2008)
- Sivakumar P, Palanisamy PN, Int. J. ChemTech. Res., 1(3), 502 (2009)
- Sulak MT, Demirbas E, Kobya M, Bioresour. Technol., 87, 2590 (2007)
- Ngah WSW, Hanafiah MAKM, Biochem. Eng. J., 39, 521 (2008)
- Chowdhury S, Mishra R, Saha P, Kushwaha P, Desalination, 265(1-3), 159 (2011)
- Kaur S, Rani S, Mahajan RK, Asif M, Gupta VK, J. Ind. Eng. Chem., 22, 19 (2015)